第一篇:高中數(shù)學必修1知識點總結(jié):第三章 函數(shù)的應(yīng)用
高中數(shù)學必修1知識點總結(jié)
第三章 函數(shù)的應(yīng)用
一、方程的根與函數(shù)的零點
1、函數(shù)零點的概念:對于函數(shù)y?f(x)(x?D),把使f(x)?0成立的實數(shù)x叫做函數(shù)y?f(x)(x?D)的零點。
2、函數(shù)零點的意義:函數(shù)y?f(x)的零點就是方程f(x)?0實數(shù)根,亦即函數(shù)y?f(x)的圖象與x軸交點的橫坐標。即:
方程f(x)?0有實數(shù)根?函數(shù)y?f(x)的圖象與x軸有交點?函數(shù)y?f(x)有零點.
3、函數(shù)零點的求法: 求函數(shù)y?f(x)的零點:(代數(shù)法)求方程f(x)?0的實數(shù)根; ○2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)y?f(x)的圖象聯(lián)系起來,并利用函○數(shù)的性質(zhì)找出零點.
4、二次函數(shù)的零點:
二次函數(shù)y?ax2?bx?c(a?0).
1)△>0,方程ax?bx?c?0有兩不等實根,二次函數(shù)的圖象與x軸有兩個交點,二次函數(shù)有兩個零點.
2)△=0,方程ax?bx?c?0有兩相等實根(二重根),二次函數(shù)的圖象與x軸有一個交點,二次函數(shù)有一個二重零點或二階零點.
3)△<0,方程ax?bx?c?0無實根,二次函數(shù)的圖象與x軸無交點,二次函數(shù)無零點. 222
第二篇:高中數(shù)學函數(shù)知識點總結(jié)
高中數(shù)學函數(shù)知識點總結(jié)
(1)高中函數(shù)公式的變量:因變量,自變量。
在用圖象表示變量之間的關(guān)系時,通常用水平方向的數(shù)軸上的點自變量,用豎直方向的數(shù)軸上的點表示因變量。
(2)一次函數(shù):①若兩個變量,間的關(guān)系式可以表示成(為常數(shù),不等于0)的形式,則稱 是的一次函數(shù)。②當=0時,稱是的正比例函數(shù)。
(3)高中函數(shù)的一次函數(shù)的圖象及性質(zhì)
①把一個函數(shù)的自變量與對應(yīng)的因變量的值分別作為點的橫坐標與縱坐標,在直角坐標系內(nèi)描出它的對應(yīng)點,所有這些點組成的圖形叫做該函數(shù)的圖象。
②正比例函數(shù)=的圖象是經(jīng)過原點的一條直線。
③在一次函數(shù)中,當0,O,則經(jīng)2、3、4象限;當0,0時,則經(jīng)1、2、4象限;當0,0時,則經(jīng)1、3、4象限;當0,0時,則經(jīng)1、2、3象限。
④當0時,的值隨值的增大而增大,當0時,的值隨值的增大而減少。
(4)高中函數(shù)的二次函數(shù):
①一般式:(),對稱軸是
頂點是;
②頂點式:(),對稱軸是頂點是;
③交點式:(),其中(),()是拋物線與x軸的交點
(5)高中函數(shù)的二次函數(shù)的性質(zhì)
①函數(shù)的圖象關(guān)于直線對稱。
②
隨
③
隨時,在對稱軸()左側(cè),值隨值的增大而減少;在對稱軸()右側(cè);的值值的增大而增大。當時,取得最小值時,在對稱軸()左側(cè),值隨值的增大而增大;在對稱軸()右側(cè);的值值的增大而減少。當時,取得最大值高中函數(shù)的圖形的對稱
(1)軸對稱圖形:①如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。②軸對稱圖形上關(guān)于對稱軸對稱的兩點確定的線段被對稱軸垂直平分。
(2)中心對稱圖形:①在平面內(nèi),一個圖形繞某個點旋轉(zhuǎn)180度,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做他的對稱中心。②中心對稱圖形上的每一對對應(yīng)點所連成的線段都被對稱中心平分。
2012高中數(shù)學知識點總結(jié):函數(shù)公式大全
9高中函數(shù)的圖形的對稱
(1)軸對稱圖形:①如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。②軸對稱圖形上關(guān)于對稱軸對稱的兩點確定的線段被對稱軸垂直平分。
(2)中心對稱圖形:①在平面內(nèi),一個圖形繞某個點旋轉(zhuǎn)180度,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做他的對稱中心。②中心對稱圖形上的每一對對應(yīng)點所連成的線段都被對稱中心平分
第三篇:高中數(shù)學函數(shù)知識點
一般的,在一個變化過程中,假設(shè)有兩個變量x、y,如果對于任意一個x都有唯一確定的一個y和它對應(yīng),那么就稱y是x的函數(shù),其中x是自變量,y是因變量,x的取值范圍叫做這個函數(shù)的定義域,相應(yīng)y的取值范圍叫做函數(shù)的值域。下面小編給大家分享一些高中數(shù)學函數(shù)知識點,希望能夠幫助大家,歡迎閱讀!
高中數(shù)學函數(shù)知識一、一次函數(shù)定義與定義式:
自變量x和因變量y有如下關(guān)系:
y=kx+b
則此時稱y是x的一次函數(shù)。
特別地,當b=0時,y是x的正比例函數(shù)。
即:y=kx(k為常數(shù),k≠0)
二、一次函數(shù)的性質(zhì):
1.y的變化值與對應(yīng)的x的變化值成正比例,比值為k
即:y=kx+b(k為任意不為零的實數(shù)b取任何實數(shù))
2.當x=0時,b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質(zhì):
1.作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)
2.性質(zhì):(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。
3.k,b與函數(shù)圖像所在象限:
當k>0時,直線必通過一、三象限,y隨x的增大而增大;
當k<0時,直線必通過二、四象限,y隨x的增大而減小。
當b>0時,直線必通過一、二象限;
當b=0時,直線通過原點
當b<0時,直線必通過三、四象限。
特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。
這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。
四、確定一次函數(shù)的表達式:
已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數(shù)的表達式。
(1)設(shè)一次函數(shù)的表達式(也叫解析式)為y=kx+b。
(2)因為在一次函數(shù)上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②
(3)解這個二元一次方程,得到k,b的值。
(4)最后得到一次函數(shù)的表達式。
五、一次函數(shù)在生活中的應(yīng)用:
1.當時間t一定,距離s是速度v的一次函數(shù)。s=vt。
2.當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。
六、常用公式:
1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)
2.求與x軸平行線段的中點:|x1-x2|/2
3.求與y軸平行線段的中點:|y1-y2|/2
4.求任意線段的長:√(x1-x2)’2+(y1-y2)’2(注:根號下(x1-x2)與(y1-y2)的平方和)
高中數(shù)學函數(shù)知識2
二次函數(shù)
I.定義與定義表達式
一般地,自變量x和因變量y之間存在如下關(guān)系:
y=ax’2+bx+c
(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)
則稱y為x的二次函數(shù)。
二次函數(shù)表達式的右邊通常為二次三項式。
II.二次函數(shù)的三種表達式
一般式:y=ax’2+bx+c(a,b,c為常數(shù),a≠0)
頂點式:y=a(x-h)’2+k[拋物線的頂點P(h,k)]
交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=-b/2ak=(4ac-b’2)/4ax?,x?=(-b±√b’2-4ac)/2a
III.二次函數(shù)的圖像
在平面直角坐標系中作出二次函數(shù)y=x’2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。
IV.拋物線的性質(zhì)
1.拋物線是軸對稱圖形。對稱軸為直線
x=-b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點P。
特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點P,坐標為
P(-b/2a,(4ac-b’2)/4a)
當-b/2a=0時,P在y軸上;當Δ=b’2-4ac=0時,P在x軸上。
3.二次項系數(shù)a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。
4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數(shù)項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點個數(shù)
Δ=b’2-4ac>0時,拋物線與x軸有2個交點。
Δ=b’2-4ac=0時,拋物線與x軸有1個交點。
Δ=b’2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=-b±√b’2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)
V.二次函數(shù)與一元二次方程
特別地,二次函數(shù)(以下稱函數(shù))y=ax’2+bx+c,當y=0時,二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),即ax’2+bx+c=0
此時,函數(shù)圖像與x軸有無交點即方程有無實數(shù)根。
函數(shù)與x軸交點的橫坐標即為方程的根。
高中數(shù)學函數(shù)知識3
反比例函數(shù)
形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。
自變量x的取值范圍是不等于0的一切實數(shù)。
反比例函數(shù)圖像性質(zhì):
反比例函數(shù)的圖像為雙曲線。
由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點對稱。
另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。
如圖,上面給出了k分別為正和負(2和-2)時的函數(shù)圖像。
當K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)
當K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)
反比例函數(shù)圖像只能無限趨向于坐標軸,無法和坐標軸相交。
知識點:
1.過反比例函數(shù)圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。
2.對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)
對數(shù)函數(shù)
對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。
右圖給出對于不同大小a所表示的函數(shù)圖形:
可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對稱圖形,因為它們互為反函數(shù)。
(1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。
(2)對數(shù)函數(shù)的值域為全部實數(shù)集合。
(3)函數(shù)總是通過(1,0)這點。
(4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。
(5)顯然對數(shù)函數(shù)無界。
高中數(shù)學函數(shù)知識點
第四篇:高中數(shù)學人教版必修1知識點總結(jié)梳理
一 集合
1、集合的含義:集合為一些確定的、不同的對象的全體。
2、集合的中元素的三個特性:確定性、互異性、無序性。
3、集合的表示:
(1)用大寫字母表示集合:A,B?
(2)集合的表示方法:
a、列舉法:將集合中的元素一一列舉出來
{a,b,c??} b、描述法:集合中元素的公共屬性描述出來,寫在大括號內(nèi)表示集合,c、維恩圖:用一條封閉曲線的內(nèi)部表示.4、集合的分類:
(1)有限集:含有有限個元素的集合(2)無限集:含有無限個元素的集合(3)空集:不含任何元素的集合5、元素與集合的關(guān)系:(A; 注意:常用數(shù)集及其記法: 非負整數(shù)集:(即自然數(shù)集)N
正整數(shù)集: N*或 N+
整數(shù)集:Z
有理數(shù)集:Q
實數(shù)集:R
6、集合間的基本關(guān)系(1)“包含”關(guān)系—子集
定義:如果集合A的任何一個元素都是集合B的元素,我們說這兩個集合有包含關(guān)系,稱集合A是集合B的子集。記作:(或BA)注意:有兩種可能(1)A是B的一部分;(2)A與B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,記作AB或BA(2)“包含”關(guān)系—真子集
如果集合,但存在元素x(B且xA,則集合A是集合B的真子集,記作AB(或BA)(3“相等”關(guān)系:A=B “元素相同則兩集合相等”,如果A(B 同時 B(A 那么A=B 規(guī)定: 空集是任何集合的子集,空集是任何非空集合的真子集。(4)集合的性質(zhì)
① 任何一個集合是它本身的子集,A(A ②如果 A(B, B(C ,那么 A(C
③如果AB且BC,那么AC ④有n個元素的集合,含有2n個子集,2n-1個真子集 集合的運算
運算類型 交
集 并
集 補
集
定
義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’)由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’)
全集:一般,若一個集合含有我們所研究問題中的所有元素,我們就稱這個集合為全集,記作:U 設(shè)S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)記作,韋恩圖示
性
質(zhì) A ∩ A=A
A ∩Φ=Φ A ∩B=BA A ∩BA A ∩BB A U A=A
A U Φ=A A U B=B U A
A U BA A U BB
AU(CuA)=U A∩(CuA)=Φ.
二 函數(shù)
1.函數(shù)的概念:記法 y=f(x),x∈A.
2.函數(shù)的三要素:定義域、值域、對應(yīng)法則 3.函數(shù)的表示方法:(1)解析法:(2)圖象法:(3)列表法:
4.函數(shù)的基本性質(zhì)
a、函數(shù)解析式子的求法(1)代入法:(2)待定系數(shù)法:(3)換元法:(4)拼湊法:
b、定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。(1)分式的分母不等于零;
(2)偶次方根的被開方數(shù)大于等于零;
(3)對數(shù)式的真數(shù)必須大于零;
(4)零次冪式的底數(shù)不等于零;(5)分段函數(shù)的各段范圍取并集;(6)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合;(7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.c、相同函數(shù)的判斷方法;(定義域一致②對應(yīng)法則一致
d.區(qū)間的概念:
e.值域(先考慮其定義域)5.分段函數(shù)
6.映射的概念
對于映射f:A→B來說,則應(yīng)滿足:
(1)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中對應(yīng)的象可以是同一個;(3)不要求集合B中的每一個元素在集合A中都有原象。
注意:函數(shù)是特殊的映射。
7、函數(shù)的單調(diào)性(局部性質(zhì))(1)增減函數(shù)定義(2)圖象的特點
如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.(3)函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法
(A)定義法: 取值; 作差; 變形; 定號; 結(jié)論.(B)圖象法(從圖象上看升降)(C)復(fù)合函數(shù)的單調(diào)性:“同增異減”
注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.8、函數(shù)的奇偶性(整體性質(zhì))(1)奇、偶函數(shù)定義
(2)具有奇偶性的函數(shù)的圖象的特征
偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱.
(3)利用定義判斷函數(shù)奇偶性的步驟:
a、首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點對稱;若是不對稱,則是非奇非偶的函數(shù);若對稱,則進行下面判斷; b、確定f(-x)與f(x)的關(guān)系;
c、作出相應(yīng)結(jié)論:若f(-x)= f(x),則f(x)是偶函數(shù);
若f(-x)=-f(x),則f(x)是奇函數(shù).
注意:函數(shù)定義域關(guān)于原點對稱是函數(shù)具有奇偶性的前提條件.首先看函數(shù)的定義域是否關(guān)于原點對稱,若不對稱則函數(shù)是非奇非偶函數(shù).(4)函數(shù)的奇偶性與單調(diào)性
奇函數(shù)在關(guān)于原點對稱的區(qū)間上有相同的單調(diào)性;
偶函數(shù)在關(guān)于原點對稱的區(qū)間上有相反的單調(diào)性。(5)若已知是奇、偶函數(shù)可以直接用特值
9、基本初等函數(shù) 一、一次函數(shù) 二、二次函數(shù):二次函數(shù)的圖象與性質(zhì),注意:二次函數(shù)值域求法
三、指數(shù)函數(shù)
(一)指數(shù)
1、有理指數(shù)冪的運算法則
2、根式的概念
3、分數(shù)指數(shù)冪
正數(shù)的分數(shù)指數(shù)冪的,(二)指數(shù)函數(shù)的性質(zhì)及其特點
1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù),其中x是自變量,函數(shù)的定義域為R.
2、指數(shù)函數(shù)的圖象和性質(zhì) a>1 0 定義域 R 定義域 R 值域 值域 在R上單調(diào)遞增 在R上單調(diào)遞減 非奇非偶函數(shù) 非奇非偶函數(shù) 函數(shù)圖象都過定點(0,1)函數(shù)圖象都過定點(0,1) 四、對數(shù)函數(shù) (一)對數(shù) 1.對數(shù)的概念:一般地,如果,那么數(shù)叫做以為底的對數(shù),記作:(— 底數(shù),— 真數(shù),— 對數(shù)式) 兩個重要對數(shù): 常用對數(shù):以10為底的對數(shù); 自然對數(shù):以無理數(shù)為底的對數(shù)的對數(shù). (二)對數(shù)的運算性質(zhì) 如果,且,,那么: ·+; -; . 注意:換底公式 (,且;,且;). 利用換底公式推導下面的結(jié)論(1);(2). (三)對數(shù)函數(shù) 1、對數(shù)函數(shù)的概念:函數(shù),且叫做對數(shù)函數(shù),其中是自變量,函數(shù)的定義域是(0,+∞). 2、對數(shù)函數(shù)的性質(zhì): a>1 0 定義域 定義域 值域為R 值域為R 在R上遞增 在R上遞減 函數(shù)圖象都過定點(1,0)函數(shù)圖象都過定點(1,0) 五、冪函數(shù) 1、冪函數(shù)定義:一般地,形如的函數(shù)稱為冪函數(shù),其中為常數(shù). 2、冪函數(shù)性質(zhì)歸納. (1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(1,1); (2)時,冪函數(shù)的圖象通過原點,并且在區(qū)間上是增函數(shù).特別地,當時,冪函數(shù)的圖象下凸;當時,冪函數(shù)的圖象上凸; (3)時,冪函數(shù)的圖象在區(qū)間上是減函數(shù).在第一象限內(nèi),當從右邊趨向原點時,圖象在軸右方無限地逼近軸正半軸,當趨于時,圖象在軸上方無限地逼近軸正半軸. 10、方程的根與函數(shù)的零點 (1)函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。(2)函數(shù)零點個數(shù)的求法:(代數(shù)法)求方程的實數(shù)根;(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.(3)二次函數(shù)的零點:判斷(4)二分法可用來求變號零點. 高中數(shù)學必修5知識點 第二章:數(shù)列 1、數(shù)列:按照一定順序排列著的一列數(shù). 2、數(shù)列的項:數(shù)列中的每一個數(shù). 3、有窮數(shù)列:項數(shù)有限的數(shù)列. 4、無窮數(shù)列:項數(shù)無限的數(shù)列. 5、遞增數(shù)列:從第2項起,每一項都不小于它的前一項的數(shù)列. 6、遞減數(shù)列:從第2項起,每一項都不大于它的前一項的數(shù)列. 7、常數(shù)列:各項相等的數(shù)列. 8、擺動數(shù)列:從第2項起,有些項大于它的前一項,有些項小于它的前一項的數(shù)列. 9、數(shù)列的通項公式:表示數(shù)列?an?的第n項與序號n之間的關(guān)系的公式. 10、數(shù)列的遞推公式:表示任一項an與它的前一項an?1(或前幾項)間的關(guān)系的公式. 11、如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),則這個數(shù)列稱為等差數(shù)列,這個常數(shù)稱為等差數(shù)列的公差. 12、由三個數(shù)a,?,b組成的等差數(shù)列可以看成最簡單的等差數(shù)列,則?稱為a與b的等差中項.若b?a?c,則稱b為a與c的等差中項. 213、若等差數(shù)列?an?的首項是a1,公差是d,則an?a1??n?1?d.通項公式的變形:①an?am??n?m?d;②a1?an??n?1?d;③d?an?a1;④n?1n?an?a1a?am?1;⑤d?n. dn?m14、若?an?是等差數(shù)列,且m?n?p?q(m、n、p、q??*),則am?an?ap?aq;若?an?是等差數(shù)列,且2n?p?q(n、p、q??*),則2an?ap?aq;下角標成等差數(shù)列的項仍是等差數(shù)列;連續(xù)m項和構(gòu)成的數(shù)列成等差數(shù)列。 15、等差數(shù)列的前n項和的公式:①Sn? n?a1?an?n?n?1?d. ;②Sn?na1?22第五篇:高中數(shù)學必修五知識點總結(jié)