欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      用高數(shù)寫(xiě)的詩(shī)

      時(shí)間:2019-05-13 09:43:48下載本文作者:會(huì)員上傳
      簡(jiǎn)介:寫(xiě)寫(xiě)幫文庫(kù)小編為你整理了多篇相關(guān)的《用高數(shù)寫(xiě)的詩(shī)》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫(xiě)寫(xiě)幫文庫(kù)還可以找到更多《用高數(shù)寫(xiě)的詩(shī)》。

      第一篇:用高數(shù)寫(xiě)的詩(shī)

      用高數(shù)寫(xiě)的詩(shī)

      拉格朗日,傅立葉旁,我凝視你凹函數(shù)般的臉龐。微分了憂傷,積分了希望,我要和你追逐黎曼最初的夢(mèng)想。感情已發(fā)散,收斂難擋,沒(méi)有你的極限,柯西抓狂,我的心已成自變量,函數(shù)因你波起波蕩。低階的有限階的,一致的不一致的,是我想你的皮亞諾余項(xiàng)。狄利克雷,勒貝格楊

      一同仰望萊布尼茨的肖像,拉貝、泰勒,無(wú)窮小量,是長(zhǎng)廊里麥克勞林的吟唱。打破了確界,你來(lái)我身旁,溫柔抹去我,阿貝爾的傷,我的心已成自變量,函數(shù)因你波起波蕩。低階的有限階的,一致的不一致的,是我想你的皮亞諾余項(xiàng)?!?/p>

      贈(zèng)給所有還在為高數(shù)糾結(jié)的躊躇的同學(xué)們,相信自己,你能行!

      第二篇:高數(shù)論文

      高數(shù)求極限方法小結(jié)

      高等數(shù)學(xué)是近代數(shù)學(xué)的基礎(chǔ),是現(xiàn)代科學(xué)技術(shù)中應(yīng)用最廣泛的一門(mén)學(xué)科。在從初等數(shù)學(xué)這種靜態(tài)的數(shù)量關(guān)系的分析到高等數(shù)學(xué)這種對(duì)動(dòng)態(tài)數(shù)量關(guān)系的研究這一發(fā)展過(guò)程中,研究對(duì)象發(fā)生了很大的變化。也正是在這一背景下,極限作為一種研究事物動(dòng)態(tài)數(shù)量關(guān)系的方法應(yīng)運(yùn)而生。極限,在學(xué)習(xí)高數(shù)中具有至關(guān)重要的作用。眾所周知,高等數(shù)學(xué)的基礎(chǔ)是微積分,而極限又是微積分的基礎(chǔ),我們不難從此看出極限與高等數(shù)學(xué)之間的相關(guān)性。同時(shí)根限又將高等數(shù)學(xué)各重要內(nèi)容進(jìn)行了統(tǒng)一,在高等數(shù)學(xué)中起到了十分重要的作用。極限的概念是高等數(shù)學(xué)中最重要也是最基本的概念之一。作為研究分析方法的重要理論基礎(chǔ),它是研究函數(shù)的導(dǎo)數(shù)和定積分的工具,極限的思想和方法也是微積分中的關(guān)鍵內(nèi)容。在理解的基礎(chǔ)上,熟練掌握求極限的方法,能夠提高高等數(shù)學(xué)的學(xué)習(xí)能力。下面,我總結(jié)了一些求極限的方法:

      一、幾種常見(jiàn)的求極限方法

      1、帶根式的分式或簡(jiǎn)單根式加減法求極限:

      1)根式相加減或只有分子帶根式:用平方差公式,湊平方(有分式又同時(shí)出現(xiàn)未知數(shù)的不同次冪:將未知數(shù)全部化到分子或分母的位置。)

      2)分子分母都帶根式:將分母分子同時(shí)乘以不同的對(duì)應(yīng)分式湊成完全平方式。

      2、分子分母都是有界變量與無(wú)窮大量加和求極限:

      分子分母同時(shí)除以該無(wú)窮大量以湊出無(wú)窮小量與有界變量的乘積結(jié)果還是無(wú)窮小量。

      3、等差數(shù)列與等比數(shù)列求極限:用求和公式。

      4、分母是乘積分子是相同常數(shù)的n項(xiàng)的和求極限:列項(xiàng)求和。

      5、分子分母都是未知數(shù)的不同次冪求極限:看未知數(shù)的次冪,分子大為無(wú)窮大,分子小為無(wú)窮小或須先通分。

      6、利用等價(jià)無(wú)窮小代換: 這種方法的理論基礎(chǔ)主要包括:(1)有限個(gè)無(wú)窮小的和、差、積仍是無(wú)窮小。

      (有界函數(shù)與無(wú)窮小的乘積仍是無(wú)窮小。(3)非零無(wú)窮小與無(wú)窮大互為倒數(shù)。(等價(jià)無(wú)窮小代換(當(dāng)求兩個(gè)無(wú)窮小之比的極限時(shí),分子與分母都可用等價(jià)無(wú)窮代替。)(5)只能在乘除時(shí)使用,但并不是在加減時(shí)一定不能用,但是前提必須證明拆開(kāi)時(shí)極限依然存在。)還有就是,一些常用的等價(jià)無(wú)窮小換

      7、洛必達(dá)法則:(大題目有時(shí)會(huì)有提示要你使用這個(gè)法則)

      首先它的使用有嚴(yán)格的前提?。。。?/p>

      1、必須是X趨近而不是N趨近?。。。ㄋ援?dāng)求數(shù)列極限時(shí)應(yīng)先轉(zhuǎn)化為相應(yīng)函數(shù)的極限,當(dāng)然,n趨近是x趨近的一種情況而已。還有一點(diǎn),數(shù)列的n趨近只可能是趨近于正無(wú)窮,不可能是負(fù)無(wú)窮)

      2、必須是函數(shù)導(dǎo)數(shù)存在?。。。偃绺嬖V你g(x),但沒(méi)告訴你其導(dǎo)數(shù)存在,直接用勢(shì)必會(huì)得出錯(cuò)誤的結(jié)果。)

      3、必須是0/0型或無(wú)窮比無(wú)窮型?。?!當(dāng)然,還要注意分母不能為零。洛必達(dá)法則分為三種情況: 1、0/0型或無(wú)窮比無(wú)窮時(shí)候直接用 2、0乘以無(wú)窮

      無(wú)窮減無(wú)窮(應(yīng)為無(wú)窮大與無(wú)窮小成倒數(shù)關(guān)系)所以,無(wú)窮大都寫(xiě)成無(wú)窮小的倒數(shù)形式了。通項(xiàng)之后就能變成1中的形式了。3、0的0次方

      1的無(wú)窮次方

      對(duì)于(指數(shù)冪數(shù))方程,方法主要是取指數(shù)還是對(duì)數(shù)的方法,這樣就能把冪上的函數(shù)移下來(lái),就是寫(xiě)成0與無(wú)窮的形式了。

      (這就是為什么只有三種形式的原因)

      8.泰勒公式

      (含有e的x次方的時(shí)候,尤其是含有正余弦的加減的時(shí)候,特別要注意!?。。?/p>

      E的x展開(kāi) sina展開(kāi) cosa展開(kāi) ln(1+x)展開(kāi) 對(duì)題目簡(jiǎn)化有很大幫助

      泰勒中值定理:如果函數(shù)f(x)在含有n的某個(gè)區(qū)間(a,b)內(nèi)具有直到n+1階導(dǎo)數(shù),則對(duì)任意x屬于(a,b),有:

      F(x)=f(x0)+

      +

      +

      …………

      +

      +Rn(X)

      其中Rn(X)=。。。。。這里的 ke see 是介于x與x0之間的某個(gè)值。

      9、夾逼定理

      這個(gè)主要介紹的是如何用之求數(shù)列極限,主要看見(jiàn)極限中的通項(xiàng)是方式和的形式,對(duì)之縮小或擴(kuò)大。

      10、無(wú)窮小與有界函數(shù)的處理方法

      面對(duì)復(fù)雜函數(shù)的時(shí)候,尤其是正余弦的復(fù)雜函數(shù)與其他函數(shù)相乘的時(shí)候,一定注意用這個(gè)方法。

      面對(duì)非常復(fù)雜的函數(shù) 可能只需要知道他的范圍結(jié)果就出來(lái)了!?。?/p>

      11、等比等差數(shù)列公式的應(yīng)用(主要對(duì)付數(shù)列極限)

      (q絕對(duì)值要小于1)

      12、根號(hào)套根號(hào)型:約分,注意??!別約錯(cuò)了

      13、各項(xiàng)拆分相加:(來(lái)消掉中間的大多數(shù))(對(duì)付的還是數(shù)列極限)

      可以使用待定系數(shù)法來(lái)拆分化簡(jiǎn)函數(shù)。

      14、利用兩個(gè)重要極限

      這兩個(gè)極限很重要。。對(duì)第一個(gè)而言是當(dāng)X趨近于0的時(shí)候sinx比上x(chóng)的值,第二個(gè)x趨近于無(wú)窮大或無(wú)窮小都有對(duì)應(yīng)的形式

      15、利用極限的四則運(yùn)算法則來(lái)求極限

      16、求數(shù)列極限的時(shí)候可以將其轉(zhuǎn)化為定積分來(lái)求。

      17、利用函數(shù)有界原理證明極限的存在性,利用數(shù)列的逆推求極限

      (1)、單調(diào)有界數(shù)列必有極限

      (2)、單調(diào)遞增且有上界的數(shù)列必有極限,單調(diào)遞減且有下界的數(shù)列必有極限。

      18、直接使用1求導(dǎo)的定義求極限

      當(dāng)題目中告訴你F(0)=0,且F(x)的導(dǎo)數(shù)為0時(shí),就暗示你一定要用導(dǎo)數(shù)的定義:、(1)、設(shè)函數(shù)y=f(x)在x0的某領(lǐng)域內(nèi)有定義,當(dāng)自變量在x在x0處取得增量的他x 時(shí),相應(yīng)的函數(shù)取得增量 的他y=f(的他x+x0)-f(x0)。如果 的他y與 的他x之比的極限存在,則稱函數(shù)y=f(x)在x0處可導(dǎo)并稱這個(gè)極限為這個(gè)函數(shù)的導(dǎo)數(shù)。

      (2)、在某點(diǎn)處可導(dǎo)的充分必要條件是左右導(dǎo)數(shù)都存在且相等。

      19、數(shù)列極限轉(zhuǎn)化為函數(shù)極限求解

      數(shù)列極限中是n趨近,面對(duì)數(shù)列極限時(shí),先要轉(zhuǎn)化為x趨近的情況下的極限,當(dāng)然n趨近是x趨近的一種形式而已,是必要條件。(還有數(shù)列的n當(dāng)然是趨近于正無(wú)窮的)

      第三篇:高數(shù)感悟

      學(xué)高數(shù)感悟

      又是一年開(kāi)學(xué)季,我的大一成了過(guò)去式,回想大一學(xué)習(xí)高數(shù)的歷程,真是感觸頗多。大一剛開(kāi)始學(xué)習(xí)高數(shù)時(shí),就發(fā)現(xiàn)與高中截然不同了,大學(xué)老師一節(jié)課講的內(nèi)容很多,速度也很快,我課上沒(méi)聽(tīng)懂的打算以后找時(shí)間再問(wèn)的,然而不懂的越積越多,能問(wèn)的時(shí)間越來(lái)越少。于是期中考只得了二十來(lái)分,那時(shí)感到害怕極了,感覺(jué)期末會(huì)掛高數(shù)了。但我可不想輕言放棄,于是剩下的半學(xué)期,我很認(rèn)真的對(duì)待起高數(shù)來(lái)。

      首先,我開(kāi)始主動(dòng)預(yù)習(xí)課前的內(nèi)容,然后課上認(rèn)真聽(tīng),盡力不讓自己睡著,積極標(biāo)注老師講的重點(diǎn),有時(shí)沒(méi)時(shí)間預(yù)習(xí),就課后看一遍當(dāng)天講的內(nèi)容??吹讲欢念}做出了記號(hào),接著就是找時(shí)間問(wèn)同學(xué),這一點(diǎn)真是不容易,有時(shí)一道題得問(wèn)兩三個(gè)同學(xué)才解出來(lái),當(dāng)然也有些題得問(wèn)老師才行。問(wèn)完后,自己又做一遍,真是簡(jiǎn)單了不少。然后平時(shí)的作業(yè)也好好做了,尤其是到臨近期末時(shí),我更是積極做題,四套模擬練習(xí)卷子都寫(xiě)了,應(yīng)該是能寫(xiě)的都寫(xiě)了。很多題都是自己去找書(shū)上近似的題來(lái)思考來(lái)仿照方法寫(xiě)的?;ㄙM(fèi)的時(shí)間可不少,兩三個(gè)星期的晚上,有時(shí)在圖書(shū)館,有時(shí)在自習(xí)室。最后則是參加了老師的答疑,與同學(xué)討論不懂的題型。

      功夫不負(fù)有心人,最終我的高數(shù)是順利過(guò)了,雖然分不高,但也有超高的喜悅感和成就感。現(xiàn)在想想,大學(xué)里的課都應(yīng)重視,只要認(rèn)真對(duì)待,總能學(xué)到東西的,只要認(rèn)真對(duì)待,總會(huì)過(guò)的。

      第四篇:高數(shù)競(jìng)賽(本站推薦)

      高數(shù)

      說(shuō)明:請(qǐng)用A4紙大小的本來(lái)做下面的題目(陰影部分要學(xué)完積分之后才能做)

      第一章 函數(shù)與極限

      一、本章主要知識(shí)點(diǎn)概述

      1、本章重點(diǎn)是函數(shù)、極限和連續(xù)性概念;函數(shù)是高等數(shù)學(xué)研究的主要對(duì)象,而極限是高等數(shù)學(xué)研究問(wèn)題、解決問(wèn)題的主要工具和方法。高等數(shù)學(xué)中的一些的重要概念,如連續(xù)、導(dǎo)數(shù)、定積分等,不外乎是不同形式的極限,作為一種思想方法,極限方法貫穿于高等數(shù)學(xué)的始終。

      然而,極限又是一個(gè)難學(xué)、難懂、難用的概念,究其原因在于,極限集現(xiàn)代數(shù)學(xué)的兩大矛盾于一身。(1)、動(dòng)與靜的矛盾:極限描述的是一個(gè)動(dòng)態(tài)的過(guò)程,而人的認(rèn)識(shí)能力本質(zhì)上具有靜態(tài)的特征。(2)無(wú)窮與有窮的矛盾:極限是一個(gè)無(wú)窮運(yùn)算,而人的運(yùn)算能力本質(zhì)上具有有窮的特征。極限就是在這兩大矛盾的運(yùn)動(dòng)中產(chǎn)生,這也是極限難學(xué)、難懂、難用之所在。

      連續(xù)性是高等數(shù)學(xué)研究對(duì)象的一個(gè)基本性質(zhì),又往往作為討論函數(shù)問(wèn)題的一個(gè)先決條件,且與函數(shù)的可導(dǎo)性、可積性存在著不可分割的邏輯關(guān)系。

      2、從2001年第一屆天津市大學(xué)數(shù)學(xué)競(jìng)賽至今共八屆競(jìng)賽試題分析,函數(shù)極限及其連續(xù)性在有的年份占了比較大的比重,連續(xù)性、極限與導(dǎo)數(shù)、積分等綜合的題目也要引起足夠的重視;從最近幾年的考題也可以看出,有個(gè)別題目是研究生入學(xué)考試題目的原題,如2004年競(jìng)賽試題二為1997年研究生入學(xué)考試題目;2006年競(jìng)賽試題一為2002年研究生入學(xué)考試試題;2005年競(jìng)賽試題一為1997年研究生入學(xué)考試試題等,這也從側(cè)面反映了部分試題難度系數(shù)。

      二、證明極限存在及求極限的常用方法

      1、用定義證明極限;

      2、利用極限的四則運(yùn)算法則;

      3、利用數(shù)學(xué)公式及其變形求極限;(如分子或分母有理化等)

      4、利用極限的夾逼準(zhǔn)則求極限;

      5、利用等價(jià)無(wú)窮小的代換求極限;

      6、利用變量代換與兩個(gè)重要極限求極限(也常結(jié)合冪指函數(shù)極限運(yùn)算公式求極限);(2)利用洛必達(dá)法則求極限;

      7、利用中值定理(主要包括泰勒公式)求極限;

      8、利用函數(shù)的連續(xù)性求極限;

      9、利用導(dǎo)數(shù)的定義求極限;

      10、利用定積分的定義求某些和式的極限;11先證明數(shù)列極限的存在(常用到“單調(diào)有界數(shù)列必有極限”的準(zhǔn)則,再利用遞歸關(guān)系求極限)

      12、數(shù)列極限轉(zhuǎn)化為函數(shù)極限等。當(dāng)然,這些方法之間也不是孤立的,如在利用洛必達(dá)法則時(shí)經(jīng)常用到變量代換與等價(jià)無(wú)窮小的代換,這大大簡(jiǎn)化計(jì)算。

      對(duì)于定積分的定義,要熟悉其定義形式,如

      (二)高數(shù)

      極限的運(yùn)算

      要靈活運(yùn)用極限的運(yùn)算方法,如初等變形,不僅是求極限的基本方法之一,也是微分、積分運(yùn)算中經(jīng)常使用的方法,常用的有分子或分母有理化、分式通分、三角變換、求和等。

      高數(shù)

      高數(shù)

      高數(shù)

      (四)連續(xù)函數(shù)的性質(zhì)及有關(guān)的證明、極限與導(dǎo)數(shù)、積分等結(jié)合的綜合性題目。

      16、(2006年數(shù)學(xué)一)

      (五)無(wú)窮小的比較與無(wú)窮小的階的確定常用工具——洛必達(dá)法則與泰勒公式。

      高數(shù)

      (六)由極限值確定函數(shù)式中的參數(shù)

      求極限式中的常數(shù),主要根據(jù)極限存在這一前提條件,利用初等數(shù)學(xué)變形、等價(jià)無(wú)窮小、必

      達(dá)法則、泰勒公式等來(lái)求解。

      高數(shù)

      四、練習(xí)題

      高數(shù)

      高數(shù)

      高數(shù)

      高數(shù)

      五、歷屆競(jìng)賽試題

      2001年天津市理工類大學(xué)數(shù)學(xué)競(jìng)賽

      2002年天津市理工類大學(xué)數(shù)學(xué)競(jìng)賽

      2003年天津市理工類大學(xué)數(shù)學(xué)競(jìng)賽

      高數(shù)

      高數(shù)

      2004年天津市理工類大學(xué)數(shù)學(xué)競(jìng)賽

      2005年天津市理工類大學(xué)數(shù)學(xué)競(jìng)賽

      高數(shù)

      2007年天津市理工類大學(xué)數(shù)學(xué)競(jìng)賽

      高數(shù)

      2010年天津市大學(xué)數(shù)學(xué)競(jìng)賽一元函數(shù)微分學(xué)部分試題

      一、填空

      注:本題為第十屆(1998年)北京市大學(xué)數(shù)學(xué)競(jìng)賽試題

      二、選擇

      三、計(jì)算

      四、證明

      高數(shù)

      首屆中國(guó)大學(xué)生數(shù)學(xué)競(jìng)賽賽區(qū)賽(初賽)試題2009年

      一、填空

      二、計(jì)算

      第五篇:高數(shù)復(fù)習(xí)提綱

      第一章

      1、極限(夾逼準(zhǔn)則)

      2、連續(xù)(學(xué)會(huì)用定義證明一個(gè)函數(shù)連續(xù),判斷間斷點(diǎn)類型)

      第二章

      1、導(dǎo)數(shù)(學(xué)會(huì)用定義證明一個(gè)函數(shù)是否可導(dǎo))注:連續(xù)不一定可導(dǎo),可導(dǎo)一定連續(xù)

      2、求導(dǎo)法則(背)

      3、求導(dǎo)公式也可以是微分公式

      第三章

      1、微分中值定理(一定要熟悉并靈活運(yùn)用--第一節(jié))

      2、洛必達(dá)法則

      3、泰勒公式拉格朗日中值定理

      4、曲線凹凸性、極值(高中學(xué)過(guò),不需要過(guò)多復(fù)習(xí))

      5、曲率公式曲率半徑

      第四章、五章不定積分:

      1、兩類換元法

      2、分部積分法(注意加C)定積分:

      1、定義

      2、反常積分

      第六章: 定積分的應(yīng)用

      主要有幾類:極坐標(biāo)、求做功、求面積、求體積、求弧長(zhǎng)

      下載用高數(shù)寫(xiě)的詩(shī)word格式文檔
      下載用高數(shù)寫(xiě)的詩(shī).doc
      將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        高數(shù)論文[★]

        微積分在信安專業(yè)的應(yīng)用 信安1602班 嚴(yán) 倩 長(zhǎng)期以來(lái),微積分都是大學(xué)理工專業(yè)的基礎(chǔ)性學(xué)科之一,也是學(xué)生普遍感覺(jué)難學(xué)的內(nèi)容之一.究其原因,既有微積分自身屬于抽象知識(shí)的因素,......

        高數(shù)學(xué)習(xí)心得

        《國(guó)富論》讀書(shū)筆記 許驍漢 16社工1班 2016335721004 簡(jiǎn)介:《國(guó)富論》是一本影響力極其巨大的書(shū),不管是在歷史學(xué),經(jīng)濟(jì)學(xué)甚至社會(huì)學(xué)都留下過(guò)濃墨重彩的一筆,所以我也慕名而來(lái)觀......

        高數(shù)心得[精選合集]

        學(xué)習(xí)高數(shù)的心得體會(huì) 有人戲稱高數(shù)是一棵高樹(shù),很多人就掛在了上面。但是,只要努力,就能爬上那棵高樹(shù),憑借它的高度,便能看到更遠(yuǎn)的風(fēng)景。 很多人害怕高數(shù),高數(shù)學(xué)習(xí)起來(lái)確實(shí)是不太輕......

        高數(shù)學(xué)習(xí)心得

        高數(shù)學(xué)習(xí)心得 有人戲稱高數(shù)是一棵高樹(shù),很多人就掛在了上面。但是,只要努力,就能爬上那棵高樹(shù),憑借它的高度,便能看到更遠(yuǎn)的風(fēng)景。極限是基礎(chǔ)也是學(xué)好后面知識(shí)的工具,后面的內(nèi)容大......

        高數(shù)論文

        摘要 一學(xué)期的高數(shù)學(xué)習(xí)即將結(jié)束,數(shù)學(xué)是一門(mén)給人智慧、讓人聰明的學(xué)科,在數(shù)學(xué)的世界中,我們可以探索以前所不知道的神秘,在這個(gè)過(guò)程中我們變得睿智、變得聰明。數(shù)學(xué)無(wú)處不在影響......

        高數(shù)心得體會(huì)

        篇一:高數(shù)心得 學(xué)習(xí)高數(shù)的心得體會(huì) 有人戲稱高數(shù)是一棵高樹(shù),很多人就掛在了上面。但是,只要努力,就能爬上那棵高樹(shù),憑借它的高度,便能看到更遠(yuǎn)的風(fēng)景。 很多人害怕高數(shù),高數(shù)學(xué)......

        高數(shù)總結(jié)

        高數(shù)總結(jié) 公式總結(jié): 1.函數(shù)定義域 值域 Y=arcsinx [-1,1] [-π/2, π/2] Y=arccosx [-1,1] [0, π] Y=arctanx (-∞,+∞) (-π/2, π/2) Y=arccotx (-∞,+∞) (0, π) Y=shx......

        高數(shù)論文

        學(xué)習(xí)高數(shù)的心得體會(huì) 學(xué)院:會(huì)計(jì)學(xué)院 班級(jí);Z1107 學(xué)號(hào):1241110807 手機(jī):*** 學(xué)習(xí)高數(shù)的心得體會(huì) 【摘要】:通過(guò)這 幾個(gè)月對(duì)數(shù)學(xué)分析這門(mén)課程的學(xué)習(xí),對(duì)這門(mén)課程有一定認(rèn)識(shí)......