第一篇:2014年高考數(shù)學(xué)題分類__數(shù)列題目
數(shù)列
1.【全國(guó)Ⅱ(文5)】等差數(shù)列?an?的公差為2,若a2,a4,a8成等比數(shù)列,則?an?的前n項(xiàng)和Sn=(A)n?n?1?(B)n?n?1?(C)
n?n?1?2
(D)
n?n?1?2
2.【大綱(理10)】等比數(shù)列{an}中,a4?2,a5?5,則數(shù)列{lgan}的前8項(xiàng)和等于A.6B.5C.4D.3
3.【大綱卷(文8)】設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若S2=3,S4=15,則S6=()A.31B.32C.63D.64
5.【天津(文5)】設(shè){an}是首項(xiàng)為a1,公差為-1的等差數(shù)列,Sn為其前n項(xiàng)和.若S1,S2,S4成等比數(shù)列,則a1=()(A)2(B)-2(C)
(D)? 22
6.【福建(理3)】等差數(shù)列{an}的前n項(xiàng)和Sn,若a1?2,S3?12,則a6?()
A.8B.10C.12D.14
7.【遼寧(文9)】設(shè)等差數(shù)列{an}的公差為d,若數(shù)列{21n}為遞減數(shù)列,則()A.d?0B.d?0C.a(chǎn)1d?0D.a(chǎn)1d?0
9.【重慶(理2)】對(duì)任意等比數(shù)列{an},下列說(shuō)法一定正確的是()
aa
A.a1,a3,a9成等比數(shù)列B.a2,a3,a6成等比數(shù)列 C.a2,a4,a8成等比數(shù)列D.a3,a6,a9成等比數(shù)列
10.【重慶(文2)】在等差數(shù)列{an}中,a1?2,a3?a5?10,則a7?()
A.5B.8C.10D.14
11.【全國(guó)Ⅱ(文16)】數(shù)列?an?滿足an?1=,=2,則a=_________.1?ana21
12.【安徽(理12)】數(shù)列?an?是等差數(shù)列,若a1?1,a3?3,a5?5構(gòu)成公比為q的等比數(shù)列,則q?________.13.【安徽】如圖,在等腰直角三角形ABC
中,斜邊
BC?過(guò)點(diǎn)A作BC的垂線,垂足為A1;過(guò)點(diǎn)A1作AC的垂線,垂足為A2;過(guò)點(diǎn)A2作A1C的垂線,垂足為A3;…,B
A2
C
A1
第12題圖
A3 A5
以此類推,設(shè)BA?a1,AA1?a2,A1A2?a3,…,A5A6?a7,則a7?.14.【北京(理12)】若等差數(shù)列?an?滿足a7?a8?a9?0,a7?a10?0,則當(dāng)n?________時(shí)?an?的前n項(xiàng)和最大.15.【天津(理11)】設(shè){an}是首項(xiàng)為a1,公差為-1的等差數(shù)列,Sn為其前n項(xiàng)和.若S1,S2,S4成等比數(shù)列,則a1的值為_(kāi)_________.16.【江西(文13)】在等差數(shù)列?an?中,a1?7,公差為d,前n項(xiàng)和為Sn,當(dāng)且僅當(dāng)n?8時(shí)Sn取最大值,則d的取值范圍_________.17.【廣東(理13)】若等比數(shù)列?an?的各項(xiàng)均為正數(shù),且a10a11?a9a12?2e5,則
lna1?lna2??lna20?
18.【廣東(文13)】等比數(shù)列?an?的各項(xiàng)均為正數(shù)且a1a5?4,則
log2a1?log2a2?log2a3?log2a4?log2a5 =.il(a3?a4??),19.【上海(理10,文,8)】設(shè)無(wú)窮等比數(shù)列{an}的公比為q,若a1?m則q=.n??
20.【全國(guó)Ⅰ(理17)】已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an?0,anan?1??Sn?1,其中?為常數(shù).(Ⅰ)證明:an?2?an??;(Ⅱ)是否存在?,使得{an}為等差數(shù)列?并說(shuō)明理由.21.【全國(guó)Ⅰ(文17)】已知?an?是遞增的等差數(shù)列,a2,a4是方程x?5x?6?0的根。
(I)求?an?的通項(xiàng)公式;(II)求數(shù)列?
?an?的前n項(xiàng)和.n??2?
22.【全國(guó)Ⅱ(理17)】已知數(shù)列?an?滿足a1=1,an?1?3an?1.(Ⅰ)證明an?是等比數(shù)列,并求?an?的通項(xiàng)公式;
?
(Ⅱ)證明:??…+?.a1a2an
23.【大綱(理18)】等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a1?10,a2為整數(shù),且Sn?S4.(I)求{an}的通項(xiàng)公式(II)設(shè)bn?,求數(shù)列{bn}的前n項(xiàng)和Tn.anan?1
24.【大綱(文17)】數(shù)列{an}滿足a1=1,a2=2,an+2=2an+1-an+2.(1)設(shè)bn=an+1-an,證明{bn}是等差數(shù)列;(2)求數(shù)列{an}的通項(xiàng)公式.25.【山東(理19)】已知等差數(shù)列{an}的公差為2,前n項(xiàng)和為Sn,且S1,S2,S4成等比數(shù)列。
(I)求數(shù)列{an}的通項(xiàng)公式;(II)令bn=(?1)n?1
4n,求數(shù)列{bn}的前n項(xiàng)和Tn。anan?1
26.【山東(文19)】在等差數(shù)列{an}中,已知公差d?2,a2是a1與a4的等比中項(xiàng).(I)求數(shù)列{an}的通項(xiàng)公式;
(II)設(shè)bn?an(n?1),記Tn??b1?b2?b3?b4?…?(?1)nbn,求Tn.27.【安徽(文18)】數(shù)列?an?滿足a1?1,nan?1?(n?1)an?n(n?1),n?N*.an?(Ⅰ)證明:數(shù)列???是等差數(shù)列;
?n?
(Ⅱ)
設(shè)bn?3n?bn?的前n項(xiàng)和Sn.28.【浙江(理19)】已知數(shù)列?an?和?bn?滿足a1a2?an?
2??n?N?.若?a?為等比數(shù)列,且
bn
?
n
a1?2,b3?6?b2.(1)求an與bn;(2)設(shè)cn?
?n?N?。記數(shù)列?cn?的前n項(xiàng)和為Sn.anbn
??
(i)求Sn;(ii)求正整數(shù)k,使得對(duì)任意n?N,均有Sk?Sn.
29.【浙江(文19)】已知等差數(shù)列{an}的公差d?0,設(shè){an}的前n項(xiàng)和為Sn,a1?1,S2?S3?36(1)求d及Sn;(2)求m,k(m,k?N*)的值,使得am?am?1?am?2?
?
?am?k?65.31.【北京(文15)】已知?an?是等差數(shù)列,滿足a1?3,a4?12,數(shù)列?bn?滿足b1?4,b4?20,且?bn?an?是等比數(shù)列。(1)求數(shù)列?an?和?bn?的通項(xiàng)公式;(2)求數(shù)列?bn?的前n項(xiàng)和.32.【天津(文理19)】已知q和n均為給定的大于1的自然數(shù).設(shè)集合M={0,1,2,合A=,q-1},集
{xx=x+xq+
+xnqn-1,xi?M,i
1,2,n}.(Ⅰ)當(dāng)q=2,n=3時(shí),用列舉法表示集合A;(Ⅱ)設(shè)s,t?A,s=a1+a2q+
+anqn-1,t=b1+b2q++bnqn-1,其中ai,bi?M,i=1,2,n.證明:若an ?3,a5?81.?log3an,求數(shù)列{bn}的前n項(xiàng)和Sn.34.【遼寧(17)】已知首項(xiàng)都是1的兩個(gè)數(shù) 列 (1)令,求數(shù)列 .的通項(xiàng)公式;若,求數(shù)列 (的前n項(xiàng)和.),滿 足 n2?n,n?N?.37.【湖南(文16)】已知數(shù)列?an?的前n項(xiàng)和Sn?2 (I)求數(shù)列?an?的通項(xiàng)公式;(II)設(shè)bn?2n???1?an,求數(shù)列?bn?的前2n項(xiàng)和.a n 38.【2014·江西卷(理文17)】已知首項(xiàng)都是1的兩個(gè)數(shù)列 (2)令,求數(shù)列 .的通項(xiàng)公式;若,求數(shù)列 (的前n項(xiàng)和.),滿足 39.【江西(文16)】已知數(shù)列 ?an?的前n項(xiàng)和S n .3n2?n??,n?N ? (1)求數(shù)列?an?的通項(xiàng)公式;證明:對(duì)任意n?1,都有m?N,使得a1,an,am成等比數(shù)列.40.【湖北(理16)】已知等差數(shù)列(1)求數(shù)列的通項(xiàng)公式.滿足:=2,且,成等比數(shù)列.(2)記為數(shù)列的前n項(xiàng)和,是否存在正整數(shù)n,使得若存在,求n的最小值;若不存在,說(shuō)明理由.43.【重慶(理文22)】 設(shè)a1(1)若b(2)若b ?1,an?1?b(n?N*) ?1,求a2,a3及數(shù)列{an}的通項(xiàng)公式; ??1,問(wèn):是否存在實(shí)數(shù)c使得a2n?c?a2n?1對(duì)所有n?N*成立?證明你的結(jié)論.44.【重慶(文16)】已知?an?是首相為1,公差為2的等差數(shù)列,Sn表示?an?的前n項(xiàng)和.(I)求an及Sn; (II)設(shè)?bn?是首相為2的等比數(shù)列,公比q滿足q2??a?1?q?S?0,求?bn?的通項(xiàng)公式及其 44前n項(xiàng)和Tn.46.【廣東卷(理文16)】設(shè)各項(xiàng)為正數(shù)的數(shù)列?an?的前n和為Sn,且Sn滿足.Sn2?(n2?n?3)Sn?3(n2?n)?0,n?N* (1)求a1的值; (2)求數(shù)列?an?的通項(xiàng)公式;(3)證明:對(duì)一切正整數(shù)n,有 ?? a1(a1?1)a2(a2?1) ? ? an(an?1)3 (2013上海卷)23.(3 分+6分+9分)給定常數(shù)c?0,定義函數(shù),數(shù)列a1,a2,a3,?滿足an?1?f(an),n?N* f(x)?2|x?c?4?|x|?c (1)若a1??c?2,求a2及a3;(2)求證:對(duì)任意n?N,an?1?an?c,; (3)是否存在a1,使得a1,a2,?an,?成等差數(shù)列?若存在,求出所有這樣的a1,若不 存在,說(shuō)明理由.(2013四川卷)16.(本小題滿分12分)在等差數(shù)列{an}中,a2?a1?8,且a4為a2和a3的等比中項(xiàng),求數(shù)列{an}的首項(xiàng)、公差及前n項(xiàng)和. (2013上海春季卷)27.(本題滿分8分) 已知數(shù)列{an}的前n項(xiàng)和為Sn??n?n,數(shù)列{bn}滿足bn?22an*,求lim(b1?b2???bn)。n?? (2013上海春季卷)30.(本題滿分13分)本題共有2個(gè)小題,第一小題滿分4分,第二小題滿分9分。 在平面直角坐標(biāo)系xOy中,點(diǎn)A在y軸正半軸上,點(diǎn)Pn在x軸上,其橫坐標(biāo)為xn,且{xn} ?是首項(xiàng)為 1、公比為2的等比數(shù)列,記?PnAPn?1??n,n?N。 (1)若?3?arctan1,求點(diǎn)A的坐標(biāo); 3,求?n的最大值及相應(yīng)n的值。(2)若點(diǎn)A的坐標(biāo) 為(0 (2013北京卷)20.(本小題共13分) 已知{an}是由非負(fù)整數(shù)組成的無(wú)窮數(shù)列,該數(shù)列前n項(xiàng)的最大值記為An,第n項(xiàng)之后各項(xiàng)an?1,an?2,…的最小值記為Bn,dn=An-Bn。 (I)若{an}為2,1,4,3,2,1,4,3,…,是一個(gè)周期為4的數(shù)列(即對(duì)任意n∈N*,an?4?an),寫(xiě)出d1,d2,d3,d4的值; (II)設(shè)d為非負(fù)整數(shù),證明:dn=-d(n=1,2,3…)的充分必要條件為{an}為公差為d的等差數(shù)列;(III)證明:若a1=2,dn=1(n=1,2,3,…),則{an}的項(xiàng)只能是1或者2,且有無(wú)窮多項(xiàng)為1.(2013湖北卷)18.已知等比數(shù)列?an?滿足:a2?a3?10,a1a2a3?125。(I)求數(shù)列?an?的通項(xiàng)公式;(II)是否存在正整數(shù)m,使得 ?????1?若存在,求m的最小值;若不存在,a1a2am 說(shuō)明理由。 (2013廣東卷)19.(本小題滿分14分) 設(shè)數(shù)列?an?的前n項(xiàng)和為Sn.已知a1?1,(Ⅰ)求a2的值; (Ⅱ)求數(shù)列?an?的通項(xiàng)公式;(Ⅲ)證明:對(duì)一切正整數(shù)n,有 (2013大綱卷)17.(本小題滿分10分)等差數(shù)列?an?的前n項(xiàng)和為Sn,已知S3=a2,2Sn12 ?an?1?n2?n?,n?N*.n33 1117 ?????.a1a2an4 且S1,S2,S4成等比數(shù)列,求?an?的通項(xiàng)式。 18.(2013浙江卷)在公差為d的等差數(shù)列{an}中,已知a1?10,且a1,2a2?2,5a3成等 比數(shù)列。 (1)求d,an;(2)若d?0,求|a1|?|a2|?|a3|???|an|.(2013天津卷)19.(本小題滿分14分)已知首項(xiàng)為的等比數(shù)列{an}不是遞減數(shù)列, 其前n2 項(xiàng)和為Sn(n?N*), 且S3 + a3, S5 + a5, S4 + a4成等差數(shù)列.(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;(Ⅱ)設(shè)Tn?Sn? (n?N*), 求數(shù)列{Tn}的最大項(xiàng)的值與最小項(xiàng)的值.Sn (2013陜西卷)17.(本小題滿分12分)設(shè){an}是公比為q的等比數(shù)列.(Ⅰ)導(dǎo){an}的前n項(xiàng)和公式; (Ⅱ)設(shè)q≠1, 證明數(shù)列{an?1}不是等 比數(shù)列.(2013山東卷)20.(本小題滿分12分)設(shè)等差數(shù)列?an?的前n項(xiàng)和為Sn,且S4?4S2,a2n?2an?1.(Ⅰ)求數(shù)列?an?的通項(xiàng)公式;(Ⅱ)設(shè)數(shù)列?bn?前n項(xiàng)和為T(mén)n,且 Tn? 求數(shù)列?cn?的前n項(xiàng)和Rn。 (2013江西卷)17.(本小題滿分12分)正項(xiàng)數(shù)列{an}的前項(xiàng)和{an}滿足: 2sn?(n2?n?1)sn?n(2?n?)0 an?1 .令cn?b2n(n?N*).??(?為常數(shù))n (1)求數(shù)列{an}的通項(xiàng)公式an;(2)令bn? (2013江蘇卷)19.本小題滿分16分。設(shè){an}是首項(xiàng)為a,公差為d的等差數(shù)列(d?0),n?15* T,數(shù)列的前項(xiàng)和為。證明:對(duì)于任意的,都有 n?NT?nnnn (n?2)2a264 Sn是其前n項(xiàng)和。記bn? nSn*,其中c為實(shí)數(shù)。n?N2 n?c (1)若c?0,且b1,b2,b4成等比數(shù)列,證明:Snk?nSk(k,n?N);(2)若{bn}是等差數(shù)列,證明:c?0。(2013江蘇卷)23.本小題滿分10分。 k個(gè) ????????? 1k-1 1,-2,-2,3,,3-,,3-,4-,4-,?4,設(shè)數(shù)列?an?:(-4)1k-k,?,(-)1k,即當(dāng) * (k?1)k(kk?1)k?1 k?N??時(shí),an?(-1)k,記Sn?a1?a2??an?n?N??,?n??22 ? 對(duì)于l?N,定義集合Pl?nSn是an的整數(shù)倍,n?N,且1?n?l ? ? ? (1)求集合P11中元素的個(gè)數(shù);(2)求集合P2000中元素的個(gè)數(shù)。 (2013上海春季卷)11.若等差數(shù)列的前6項(xiàng)和為23,前9項(xiàng)和為57,則數(shù)列的前n項(xiàng)和 Sn=。 (2013安徽卷)14.如圖,互不-相同的點(diǎn)A1,A2?,Xn,?和B1,B2?,Bn,?分別在角O的兩條邊上,所有AnBn相互平行,且所有梯形AnBnBn?1An?1的面積均相等。設(shè)OAn?an.若 a1?1,a2?2,則數(shù)列?an?的通項(xiàng)公式是_________。 (2013北京卷)10.若等比數(shù)列{an}滿足a2+a4=20,a3+a5=40,則公比q;前n項(xiàng)和Sn(2013福建卷)9.已知等比數(shù)列{an}的公比為q,記bn?am(n?1)?1?am(n?1)?2?...?am(n?1)?m,cn?am(n?1)?1?am(n?1)?2?...?am(n?1)?m(m,n?N*),則以下結(jié)論一定正確的是() A.?dāng)?shù)列{bn}為等差數(shù)列,公差為qB.?dāng)?shù)列{bn}為等比數(shù)列,公比為qC.?dāng)?shù)列{cn}為等比數(shù)列,公比為q m2m 2m D.?dāng)?shù)列{cn}為等比數(shù)列,公比為q mm (2013大綱卷)6.已知數(shù)列?an?滿足3an?1?an?0,a2??,則?an?的前10項(xiàng)和等于 3 ?10 ?10 ?61?3(A) ? ?10 3?1?3?3?1+3?(B?1?3?(C)(D)? ?10 a1?1,Sn為其前n項(xiàng)和,(2013重慶卷)12.已知?an?是等差數(shù)列,公差d?0,若a1,a2,a5 成等比數(shù)列,則S8?_____ (2013課標(biāo)卷Ⅱ)3.等比數(shù)列?an?的前n項(xiàng)和為Sn,已知S3?a2?10a1,a5?9,則a1? (A) (B)?3 (C) (D)?9 (2013課標(biāo)卷Ⅰ)14.若數(shù)列{an}的前n項(xiàng)和為Sn= an?,則數(shù)列{an}的通項(xiàng)公式是33 an=______. 2013年高考試題分類匯編——數(shù)列 2013遼寧(4)下面是關(guān)于公差d?0的等差數(shù)列?an?的四個(gè)命題: p1:數(shù)列?an?是遞增數(shù)列;ap2:數(shù)列?nn ?是遞增數(shù)列; ?a? p4:數(shù)列?an?3nd?是遞增數(shù)列; p3:數(shù)列?n?是遞增數(shù)列; ?n? 其中的真命題為 (A)p1,p2(B)p3,p4(C)p2,p3(D)p1,p4 2013遼寧(14)已知等比數(shù)列?an?是遞增數(shù)列,Sn是?an?的前n項(xiàng)和.若a1,a3是方程 x2?5x?4?0的兩個(gè)根,則S6? 2013湖南15.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,Sn?(?1)nan?(1)a3?(2)S1?S2???S100? 1?,則 n?Nn 22013安徽(8)函數(shù)y=f(x)的圖象如圖所示, 在區(qū)間[a,b]上可找到n(n≥2)個(gè)不同的數(shù)x1,x2,…, xn ,使得 f(xn)f(x1)f(x2) ??...?,則nx1x2xn的取值范圍是 (A){3,4}(B){2,3,4}(C){3,4,5}(D){2,3} 2013安徽(20)(13分)設(shè)函數(shù) x2x3xn fn(x)??1?x?2?2?...?2(x?R,n?N?),證明: 23n 2(1)對(duì)每個(gè)n∈N+,存在唯一的xn?[,1],滿足fn(xn)?0; 3(2)對(duì)于任意p∈N+,由(1)中xn構(gòu)成數(shù)列{xn}滿足0?xn?xn?p? 1.n 2013安徽文(7)設(shè)Sn為等差數(shù)列?an?的前n項(xiàng)和,S8?4a3,a7??2,則a9=(A)?6(B)?4(C)?2(D)2 2013北京(10)若等比數(shù)列?an?滿足a2?a4?20,a3?a5?40,則公比q?;前n項(xiàng)和Sn? . 2013北京(20)(本小題共13分) 已知?an?是由非負(fù)整數(shù)組成的無(wú)窮數(shù)列,該數(shù)列前n項(xiàng)的最大值記為An,第n項(xiàng)之后各項(xiàng)an?1,an?2?的最小值記為Bn,dn?An?Bn. (Ⅰ)若?an?為2,1,4,3,2,1,4,3…,是一個(gè)周期為4的數(shù)列(即對(duì)任意n?N*,寫(xiě)出d1,d2,d3,d4的值;an?4?an) (Ⅱ)設(shè)d是非負(fù)整數(shù),證明:dn??d?n?1,2,3??的充分必要條件為?an?是公差為d的等差數(shù)列; (Ⅲ)證明:若a1?2,dn?1?n?1,2,3,??,則?an?的項(xiàng)只能是1或者2,且有無(wú)窮多項(xiàng)為1.?(n2?n?1)sn?(n2?n)?0 正項(xiàng)數(shù)列{an}的前項(xiàng)和{an}滿足:sn (1)求數(shù)列{an}的通項(xiàng)公式an;(2)令bn?都有Tn? n? 1,數(shù)列{bn}的前n項(xiàng)和為T(mén)n。證明:對(duì)于任意的n?N*,22 (n?2)a6 42013全國(guó)大綱17.(本小題滿分10分) 等差數(shù)列?an?的前n項(xiàng)和為Sn.已知S3=a22,且S1,S2,S4成等比數(shù)列,求?an?的通項(xiàng)式.a2?a1?8,2013四川16.(本小題滿分12分)在等差數(shù)列{an}中,且a4為a2和a3的等比中項(xiàng),求數(shù)列{an}的首項(xiàng)、公差及前n項(xiàng)和. 2013天津(19)(本小題滿分14分) 已知首項(xiàng)為的等比數(shù)列{an}不是遞減數(shù)列, 其前n項(xiàng)和為Sn(n?N*), 且S3 + a3, S5 + a5, S4 + a4成等差數(shù)列.(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;(Ⅱ)設(shè)Tn?Sn? (n?N*), 求數(shù)列{Tn}的最大項(xiàng)的值與最小項(xiàng)的值.Sn 322013陜西14.觀察下列等式:12?112?22??3 12?22?32?6 12?22?32?42??10 … 照此規(guī)律, 第n個(gè)等式可為.2013陜西17.(本小題滿分12分)設(shè){an}是公比為q的等比數(shù)列.(Ⅰ)導(dǎo){an}的前n項(xiàng)和公式; (Ⅱ)設(shè)q≠1, 證明數(shù)列{an?1}不是等比數(shù)列.2013全國(guó)課標(biāo) 7、設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,Sm?1=-2,Sm=0,Sm?1=3,則m=() A、3B、4C、5D、6 2013全國(guó)課標(biāo) 12、設(shè)△AnBnCn的三邊長(zhǎng)分別為an,bn,cn,△AnBnCn的面積為Sn,n=1,2,3,… 若b1>c1,b1+c1=2a1,an+1=an,bn+1= cn+anbn+an c=n+122,則() A、{Sn}為遞減數(shù)列B、{Sn}為遞增數(shù)列 C、{S2n-1}為遞增數(shù)列,{S2n}為遞減數(shù)列D、{S2n-1}為遞減數(shù)列,{S2n}為遞增數(shù)列 212013全國(guó)課標(biāo)14、若數(shù)列{an}的前n項(xiàng)和為Sn=an?,則數(shù)列{an}的通項(xiàng)公 3式是an=______.2013湖北 14、古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家研究過(guò)各種多邊形數(shù)。如三角形數(shù)1,3,6,10,…,第n個(gè)三角形數(shù)為 n?n?1?1 21?n?n。記第n個(gè)k邊形數(shù)為222 N?n,k??k?3?,以下列出了部分k邊形數(shù)中第n個(gè)數(shù)的表達(dá)式: 三角形數(shù)N?n,3?? 121 n?n 22 正方形數(shù)N?n,4??n2 五邊形數(shù)N?n,5?? 321n?n 22 六邊形數(shù)N?n,6??2n2?n …… 可以推測(cè)N?n,k?的表達(dá)式,由此計(jì)算N?10,24??。2013湖北18、已知等比數(shù)列?an?滿足:a2?a3?10,a1a2a3?125。(I)求數(shù)列?an?的通項(xiàng)公式;(II)是否存在正整數(shù)m,使得若不存在,說(shuō)明理由。 2013江蘇14.在正項(xiàng)等比數(shù)列{an}中,a5? a1?a2???an?a1a2?an的,a6?a7?3,則滿足 2111?????1?若存在,求m的最小值;a1a2am 最大正整數(shù)n的值為. 2013江蘇19.(本小題滿分16分) 設(shè){an}是首項(xiàng)為a,公差為d的等差數(shù)列(d?0),Sn是其前n項(xiàng)和.記 bn? nSn,n2?c n?N*,其中c為實(shí)數(shù). (1)若c?0,且b1,b2,b4成等比數(shù)列,證明:Snk?n2Sk(k,n?N*);(2)若{bn}是等差數(shù)列,證明:c?0. 2013浙江18.(本小題滿分14分)在公差為d的等差數(shù)列{an}中,已知a1=10,且a1,2a2+2,5a3成等比數(shù)列(Ⅰ)求d,an; (Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|an|. 2013重慶(12)已知?an?是等差數(shù)列,a1?1,公差d?0,Sn為其前n項(xiàng)和,若a1、a2、a5稱等比數(shù)列,則S8?. 2013全國(guó)課標(biāo)2(16)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知S10=0,S15 =25,則nSn 的最小值為_(kāi)_______. 數(shù)列綜合題 1.已知等差數(shù)列滿足:,的前n項(xiàng)和為. (Ⅰ)求及; (Ⅱ)令bn=(),求數(shù)列的前n項(xiàng)和。 2.已知遞增的等比數(shù)列滿足是的等差中項(xiàng)。 (Ⅰ)求數(shù)列的通項(xiàng)公式; (Ⅱ)若是數(shù)列的前項(xiàng)和,求 3.等比數(shù)列為遞增數(shù)列,且,數(shù)列(n∈N※) (1)求數(shù)列的前項(xiàng)和; (2),求使成立的最小值. 4.已知數(shù)列{ }、{ }滿足:.(1)求; (2)求數(shù)列{ }的通項(xiàng)公式; (3)設(shè),求實(shí)數(shù)為何值時(shí)恒成立 5.在數(shù)列中,為其前項(xiàng)和,滿足. (I)若,求數(shù)列的通項(xiàng)公式; (II)若數(shù)列為公比不為1的等比數(shù)列,且,求. 6.已知數(shù)列中,,(1)求證:數(shù)列為等比數(shù)列。 (2)設(shè)數(shù)列的前項(xiàng)和為,若,求正整數(shù)列的最小值。 7.已知數(shù)列的前n項(xiàng)和為,若 (1)求證:為等比數(shù)列; (2)求數(shù)列的前n項(xiàng)和。 8.已知數(shù)列中,當(dāng)時(shí),其前項(xiàng)和滿足. (1)求的表達(dá); (2)求數(shù)列的通項(xiàng)公式; 9.已知數(shù)列的首項(xiàng),其中。 (1)求證:數(shù)列為等比數(shù)列; (2)記,若,求最大的正整數(shù). 10已知數(shù)列的前項(xiàng)和為,且對(duì)任意,有成等差數(shù)列. (1)記數(shù)列,求證:數(shù)列是等比數(shù)列; (2)數(shù)列的前項(xiàng)和為,求滿足的所有的值. 11.已知數(shù)列的前n項(xiàng)和滿足:(為常數(shù),) (1)求的通項(xiàng)公式; (2)設(shè),若數(shù)列為等比數(shù)列,求的值; (3)在滿足條件(2)的情形下,數(shù)列的前n項(xiàng)和為. 求證:. 正數(shù)數(shù)列{an}的前n項(xiàng)和為Sn,且2. (1)試求數(shù)列{an}的通項(xiàng)公式; (2)設(shè)bn=,{bn}的前n項(xiàng)和為T(mén)n,求證:. 13已知數(shù)列是公差不為零的等差數(shù)列,其前項(xiàng)和為,且,又 成等比數(shù)列. (1)求; (2)若對(duì)任意,都有,求的最小值. 14已知數(shù)列滿足:. (1)求證:數(shù)列是等比數(shù)列; (2)令(),如果對(duì)任意,都有,求實(shí)數(shù)的取值范圍. 在數(shù)列中,,(1)設(shè),求數(shù)列的通項(xiàng)公式; (2)求數(shù)列的前項(xiàng)和. 16.已知各項(xiàng)均為正數(shù)的數(shù)列{an}前n項(xiàng)和為Sn,(p – 1)Sn = p2 – an,n ∈N*,p 0且p≠1,數(shù)列{bn}滿足bn = 2logpan. (1)若p =,設(shè)數(shù)列的前n項(xiàng)和為T(mén)n,求證:0 Tn≤4; (2)是否存在自然數(shù)M,使得當(dāng)n M時(shí),an 1恒成立?若存在,求出相應(yīng)的M;若不存在,請(qǐng)說(shuō)明理由. 17.設(shè)數(shù)列的前n項(xiàng)和為,且對(duì)任意正整數(shù)n都成立,其中為常數(shù),且,(1)求證:是等比數(shù)列; (2)設(shè)數(shù)列的公比,數(shù)列滿足:,求數(shù)列的前項(xiàng)和. — END — 2012屆知識(shí)梳理—數(shù)列 ?1a(n?2k)?11?2n (k?N*),記bn?a2n?1?,1、(河西三模)設(shè)數(shù)列{an}的首項(xiàng)a1?,且an?1??24?a?1(n?2k?1)n?? 4n ?1,2,3,(I)求a2,a3; (II)判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;(III)證明b1?3b2?5b3??(2n?1)bn?3.22(Sn?n)3* 2、(南開(kāi)二模)已知數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)于任意的n?N,有an? (I)求證:數(shù)列{an?1}是等比數(shù)列,并求{an}的通項(xiàng)公式;(II)求數(shù)列{n?an}的前n項(xiàng)和Tn3、(和平二模)已知數(shù)列{an}滿足a1? (I)求{an}的通項(xiàng)公式; (II)若Tn?b12?b22?(III)設(shè)cn?a11 ,an?1?an?n(n?N*),bn?2n?14an?1?bn2,求證Tn?2; 1,求數(shù)列{cn}的前n項(xiàng)和.bn?bn? 14、(河北一摸)在數(shù)列{an}與{bn}中,數(shù)列{an}的前n項(xiàng)Sn滿足Sn?n2?2n,數(shù)列{bn}的前n項(xiàng)和Tn 滿足3Tn?nbn?1,且b1?1,n?N*.(I)求{an}的通項(xiàng)公式; (II)求數(shù)列{bn}的通項(xiàng)公式; (III)設(shè)cn?bn(an?1)2n?cos,求數(shù)列{cn}的前n項(xiàng)和.n?1 3* 5、(南開(kāi)一摸)設(shè)數(shù)列{an}滿足:?n?N,an?2Sn?243,其中Sn為數(shù)列{an}的前n項(xiàng)和.數(shù)列{bn}滿 足bn?log3an.(I)求數(shù)列{an}的通項(xiàng)公式; (II)求數(shù)列{cn}滿足:cn?bn?Sn,求數(shù)列{cn}的前n項(xiàng)和公式.6、(市內(nèi)六校聯(lián)考二)已知二次函數(shù)f(x)?ax2?bx的圖象過(guò)點(diǎn)(?4n,0),且f'(0)?2n,n?N*(I)求f(x)的解析式;(II)設(shè)數(shù)列滿足 1?f'(),且a1?4,求數(shù)列{an}的通項(xiàng)公式; anan (III)記bn? {bn}的前n項(xiàng)和為T(mén)n,求證:?Tn?2.7、(市內(nèi)六校聯(lián)考三)數(shù)列{an}的前n項(xiàng)和為Sn,a1?1,且對(duì)于任意的正整數(shù)n,點(diǎn)(an?1,Sn)在直線 2x?y?2?0上.(I)求數(shù)列{an}的通項(xiàng)公式; (II)是否存在實(shí)數(shù)?,使得{Sn???n? ? 2n 為等差數(shù)列?若存在,求出?的值,若不存在,說(shuō)明理由.112?n(III)已知數(shù)列{bn},bn?,bn的前n項(xiàng)和為T(mén)n,求證:?Tn?.62(an?1)(an?1?1) 8、(河?xùn)|一摸)將等差數(shù)列{an}所有項(xiàng)依次排列,并作如下分組:(a1),(a2,a3),(a4,a5,a6,a7),組1項(xiàng),第二組2項(xiàng),第三組4項(xiàng),第n組 2n? 1,第一 項(xiàng).記Tn為第n組中各項(xiàng)和,已知T3??48,T4?0.(I)求數(shù)列{an}的通項(xiàng)公式;(II)求Tn的通項(xiàng)公式;(III)設(shè){Tn}的前n項(xiàng)的和為Sn,求S8.9、(河西區(qū)一摸)已知數(shù)列{an}滿足a1? (n?1)(2an?n) 1,an?1?(n?N*)2an?4n an?kn 為公差是?1的等差數(shù)列,求k的值; an?n .1 2(I)求a2,a3,a4;(II)已知存在實(shí)數(shù)k,使得數(shù)列{ (III)記bn? n?N*),數(shù)列{bn}的前n項(xiàng)和為S n,求證Sn?? 10、(和平一摸)在等差數(shù)列{an}和等比數(shù)列{bn}中,已知a1?1,a4?7,b1?a1?1,b4?a8?1(I)分別求出{an},{bn}的通項(xiàng)公式;(II)若{an}的前n項(xiàng)和為Sn,1 1??S1S 2? 與2的大?。?Sn (III)設(shè)Tn? a1a2 ??b1b2 ? an*,若Tn?c(c?N),求c的最小值.bn ?2an?1(n?2k)? 11、(紅橋區(qū)4月)已知數(shù)列{an}滿足:a1?1,an??n?1(k?N*),n?2,3,4,?2?2an?1(n?2k?1)? 2(I)求a3,a4,a5;(II)設(shè)bn?a2n?1?1,n?1,2,3,(III)若數(shù)列{cn}滿足2 2(c1?1),,求證:數(shù)列{bn}是等比數(shù)列,并求出其通項(xiàng)公式; ?22(c2?1)? ?22(cn?1)?bncn,證明:{cn}是等差數(shù)列.12、(河北區(qū)二模)已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和Sn滿足6Sn?(an?1)(an?2),且S1?1(I)求{an}的通項(xiàng)公式;(II)設(shè)數(shù)列{bn}滿足an(2n b? 1?1)?1,記Tn為{bn}的前n項(xiàng)和,求證:3Tn?1?log2(an?3).Sn?1?Sn2an?1,? Sn?Sn?1an13、(第二次12校)已知數(shù)列{an}的首項(xiàng)a1?1,a2?3,前n項(xiàng)和為Sn,且 (n?N*,n?2),數(shù)列?bn?滿足b1?1,bn?1?log2(an?1)?bn。 (Ⅰ)判斷數(shù)列1{an?1}是否為等比數(shù)列,并證明你的結(jié)論; n 2?1),求c1?c2?c3???cn;(II)設(shè)cn??an(bn?2 (Ⅲ)對(duì)于(Ⅰ)中數(shù)列?an?,若數(shù)列{ln}滿足ln?log2(an?1)(n?N*),在每?jī)蓚€(gè)lk與lk?1 之間都插入2k?1(k?1,2,3,?k?N*)個(gè)2,使得數(shù)列{ln}變成了一個(gè)新的數(shù)列{tp},(p?N?)試問(wèn):是否存在正整數(shù)m,使得數(shù)列{tp}的前m項(xiàng)的和Tm?2011?如果存在,求出m的值;如果不存在,說(shuō)明理由.14、(第一次12校)已知數(shù)列{an}的前n項(xiàng)和Sn滿足:a(Sn?an)?Sn?a(a為不為零的常數(shù),a?R) (n?N?). (Ⅰ)求{an}的通項(xiàng)公式;(Ⅱ)設(shè)cn?nan?1,求數(shù)列{cn}的前n項(xiàng)和Tn;(Ⅲ)當(dāng)數(shù)列{an}中的a?2時(shí),求證: 2222232n 1???????. 15(a1?1)(a2?1)(a2?1)(a3?1)(a3?1)(a4?1)(an?1)(an?1?1) 315、(五校聯(lián)考)在數(shù)列?an?中,a1? a?211?,an?1?n,n?N 7an (I)令bn? 1?,求證:數(shù)列?bn?是等比數(shù)列;(II)若dn?(3n?2)bn,求數(shù)列?dn?的前n項(xiàng) an?2 3? ? 和Sn;(Ⅲ)若cn?3n??bn(?為非零整數(shù),n?N)試確定?的值,使得對(duì)任意n?N,都有cn?1?cn成立. 16.(津南區(qū)一模)等比數(shù)列{an}為遞增數(shù)列,且a4?(I)求數(shù)列{bn}的前n項(xiàng)和Sn及Sn的最小值; a220*,a3?a5?,數(shù)列bn?log3n(n?N)39 2(II)設(shè)Tn?b1?b2?b22???b2n?1,求使Tn?5n?32?0成立的n的最小值. 17、(河?xùn)|二模)已知數(shù)列{bn}(n?N?)是遞增的等比數(shù)列,且b1?b3?5,b1b3? 4(1)求數(shù)列{bn}的通項(xiàng)公式;(2)若數(shù)列{an}的通項(xiàng)公式是an?n?2,數(shù)列{anbn}的前n項(xiàng)和為sn,求sn 18、(河西二模)已知曲線C:y?x2(x?0),過(guò)C上的點(diǎn)A1(1,1)做曲線C的切線l1交x軸于點(diǎn)B1,再過(guò)點(diǎn) B1作y軸的平行線交曲線C于點(diǎn)A2,再過(guò)點(diǎn)A2作曲線C的切線l2交x軸于點(diǎn)B2,再過(guò)點(diǎn)B2作y軸的平 行線交曲線C于點(diǎn)A3,……,依次作下去,記點(diǎn)An的橫坐標(biāo)為an(n?N?) (1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)數(shù)列{an}的前n項(xiàng)和為sn,求證:ansn?1; 14n? 1(3)求證:? ? 3i?1aisi n 19.(09天津文)已知等差數(shù)列{an}的公差d不為0,設(shè)Sn?a1?a2q???anqn?1 Tn?a1?a2q???(?1)n?1anqn?1,q?0,n?N* (Ⅰ)若q?1,a1?1,S3?15 ,求數(shù)列{an}的通項(xiàng)公式;(Ⅱ)若a1?d,且S1,S2,S3成等比數(shù)列,求q的值。(Ⅲ)若q??1,證明(1?q)S2n19、(2010文)在數(shù)列?an 2dq(1?q2n)* ?(1?q)T2n?,n?N2 1?q ?中,a1?0,且對(duì)任意k?N*,a2k?1,a2k,a2k?1成等差數(shù)列,其公差為2k.?的通項(xiàng)公式; (Ⅰ)證明a4,a5,a6成等比數(shù)列;(Ⅱ)求數(shù)列?an 32232n2 (Ⅲ)記Tn???……+,證明?2n?Tn?2(n?2).2a2a3an 20.(2011文)已知數(shù)列{an}與{bn}滿足bn?1an?bnan?1 3?(?1)n?1 ?(?2)?1,bn?,n?N*,且a1?2.n (Ⅰ)求a2,a3的值;(Ⅱ)設(shè)cn?a2n?1?a2n?1,n?N*,證明{cn}是等比數(shù)列;(Ⅲ)設(shè)Sn為{an}的前n項(xiàng)和,證明 S1S2 ??a1a2 ? S2n?1S2n1 ??n?(n?N*).a2n?1a2n3第二篇:2013高考試題分類——數(shù)列
第三篇:2013高考試題分類—數(shù)列
第四篇:高考數(shù)列專題練習(xí)(匯總)
第五篇:數(shù)列高考復(fù)習(xí)