欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      2018考研數(shù)學(xué):巧答證明題的3個(gè)方法

      時(shí)間:2019-05-14 16:08:37下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《2018考研數(shù)學(xué):巧答證明題的3個(gè)方法》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《2018考研數(shù)學(xué):巧答證明題的3個(gè)方法》。

      第一篇:2018考研數(shù)學(xué):巧答證明題的3個(gè)方法

      http://004km.cn/kaoyan/

      2018考研數(shù)學(xué):巧答證明題的3個(gè)方法

      證明題是考研數(shù)學(xué)題型中考生比較頭疼的一類,從基礎(chǔ)復(fù)習(xí)開始,就需要大家多多總結(jié),掌握方法技巧。下面文都網(wǎng)校考研頻道就來談?wù)剶?shù)學(xué)證明題巧答的3個(gè)方法,2018考研考生get了嗎?

      1.結(jié)合幾何意義記住零點(diǎn)存在定理、中值定理、泰勒公式、極限存在的兩個(gè)準(zhǔn)則等基本原理,包括條件及結(jié)論。

      知道基本原理是證明的基礎(chǔ),知道的程度(即就是對定理理解的深入程度)不同會導(dǎo)致不同的推理能力。如2006年數(shù)學(xué)一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因?yàn)閿?shù)學(xué)推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個(gè)題目非常簡單,只用了極限存在的兩個(gè)準(zhǔn)則之一:單調(diào)有界數(shù)列必有極限。只要知道這個(gè)準(zhǔn)則,該問題就能輕松解決,因?yàn)閷τ谠擃}中的數(shù)列來說,“單調(diào)性”與“有界性”都是很好驗(yàn)證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。

      2.借助幾何意義尋求證明思路

      一個(gè)證明題,大多時(shí)候是能用其幾何意義來正確解釋的,當(dāng)然最為基礎(chǔ)的是要正確理解題目文字的含義。如2007年數(shù)學(xué)一第19題是一個(gè)關(guān)于中值定理的證明題,可以在直角坐標(biāo)系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個(gè)函數(shù)除兩個(gè)端點(diǎn)外還有一個(gè)函數(shù)值相等的點(diǎn),那就是兩個(gè)函數(shù)分別取最大值的點(diǎn)(正確審題:兩個(gè)

      http://004km.cn/kaoyan/)之間的一個(gè)點(diǎn)。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個(gè)零點(diǎn),兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。再如2005年數(shù)學(xué)一第18題(1)是關(guān)于零點(diǎn)存在定理的證明題,只要在直角坐標(biāo)系中結(jié)合所給條件作出函數(shù)y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個(gè)函數(shù)圖形有交點(diǎn),這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應(yīng)該看到兩函數(shù)在兩個(gè)端點(diǎn)處大小關(guān)系恰好相反,也就是差函數(shù)在兩個(gè)端點(diǎn)的值是異號的,零點(diǎn)存在定理保證了區(qū)間內(nèi)有零點(diǎn),這就證得所需結(jié)果。如果第二步實(shí)在無法完滿解決問題的話,轉(zhuǎn)第三步。

      3.逆推法

      從結(jié)論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。在判定函數(shù)的單調(diào)性時(shí)需借助導(dǎo)數(shù)符號與單調(diào)性之間的關(guān)系,正常情況只需一階導(dǎo)的符號就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時(shí)需先用二階導(dǎo)數(shù)的符號判定一階導(dǎo)數(shù)的單調(diào)性,再用一階導(dǎo)的符號判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。該題中可設(shè)F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。

      對于那些經(jīng)常使用如上方法的考生來說,利用三步走就能輕松收獲數(shù)學(xué)證明的12分,但對于從心理上就不自信能解決證明題的考生來說,卻常常輕易丟失12分,后一部分同學(xué)請按“證明三步走”來建立自信心,以阻止考試分?jǐn)?shù)的白白流失。

      第二篇:考研數(shù)學(xué)證明題三大解題方法

      考研數(shù)學(xué)證明題三大解題方法

      縱觀近十年考研數(shù)學(xué)真題,大家會發(fā)現(xiàn):幾乎每一年的試題中都會有一個(gè)證明題,而且基本上都是應(yīng)用中值定理來解決問題的。但是要參加碩士入學(xué)數(shù)學(xué)統(tǒng)一考試的同學(xué)所學(xué)專業(yè)要么是理工要么是經(jīng)管,同學(xué)們在大學(xué)學(xué)習(xí)數(shù)學(xué)的時(shí)候?qū)τ谶壿嬐评矸矫娴挠?xùn)練大多是不夠的,這就導(dǎo)致數(shù)學(xué)考試中遇到證明推理題就發(fā)怵,以致簡單的證明題得分率卻極低。除了個(gè)別考研輔導(dǎo)書中有一些證明思路之外,大多數(shù)考研輔導(dǎo)書在這一方面沒有花太大力氣,本人自認(rèn)為在推理證明方面有不凡的效績,在此給大家簡單介紹一些解決數(shù)學(xué)證明題的入手點(diǎn),希望對有此隱患的同學(xué)有所幫助。

      一、結(jié)合幾何意義記住零點(diǎn)存在定理、中值定理、泰勒公式、極限存在的兩個(gè)準(zhǔn)則等基本原理,包括條件及結(jié)論。

      知道基本原理是證明的基礎(chǔ),知道的程度(即就是對定理理解的深入程度)不同會導(dǎo)致不同的推理能力。如2006年數(shù)學(xué)一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因?yàn)閿?shù)學(xué)推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個(gè)題目非常簡單,只用了極限存在的兩個(gè)準(zhǔn)則之一:單調(diào)有界數(shù)列必有極限。只要知道這個(gè)準(zhǔn)則,該問題就能輕松解決,因?yàn)閷τ谠擃}中的數(shù)列來說,“單調(diào)性”與“有界性”都是很好驗(yàn)證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。

      二、借助幾何意義尋求證明思路

      一個(gè)證明題,大多時(shí)候是能用其幾何意義來正確解釋的,當(dāng)然最為基礎(chǔ)的是要正確理解題目文字的含義。如2007年數(shù)學(xué)一第19題是一個(gè)關(guān)于中值定理的證明題,可以在直角坐標(biāo)系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個(gè)函數(shù)除兩個(gè)端點(diǎn)外還有一個(gè)函數(shù)值相等的點(diǎn),那就是兩個(gè)函數(shù)分別取最大值的點(diǎn)(正確審題:兩個(gè)函數(shù)取得最大值的點(diǎn)不一定是同一個(gè)點(diǎn))之間的一個(gè)點(diǎn)。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個(gè)零點(diǎn),兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。再如2005年數(shù)學(xué)一第18題(1)是關(guān)于零點(diǎn)存在定理的證明題,只要在直角坐標(biāo)系中結(jié)合所給條件作出函數(shù)y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個(gè)函數(shù)圖形有交點(diǎn),這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應(yīng)該看到兩函數(shù)在兩個(gè)端點(diǎn)處大小關(guān)系恰好相反,也就是差函數(shù)在兩個(gè)端點(diǎn)的值是異號的,零點(diǎn)存在定理保證了區(qū)間內(nèi)有零點(diǎn),這就證得所需結(jié)果。如果第二步實(shí)在無法完滿解決問題的話,轉(zhuǎn)第三步。

      三、逆推

      從結(jié)論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。在判定函數(shù)的單調(diào)性時(shí)需借助導(dǎo)數(shù)符號與單調(diào)性之間的關(guān)系,正常情況只需一階導(dǎo)的符號就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時(shí)需先用二階導(dǎo)數(shù)的符號判定一階導(dǎo)數(shù)的單調(diào)性,再用一階導(dǎo)的符號判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。該題中可設(shè)F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。

      對于那些經(jīng)常使用如上方法的同學(xué)來說,利用三步走就能輕松收獲數(shù)學(xué)證明的12分,但對于從心理上就不自信能解決證明題的同學(xué)來說,卻常常輕易丟失12分,后一部分同學(xué)請按“證明三步走”來建立自信心,以阻止考試分?jǐn)?shù)的白白流失。

      第三篇:考研數(shù)學(xué)證明題三大解題方法

      考研數(shù)學(xué)證明題三大解題方法

      最專業(yè)的學(xué)習(xí)資料下載網(wǎng)站

      歡迎下載http://NewDown.org的學(xué)習(xí)資料,為了您的電腦更安全,請從http://NewDown.org下載本站資料,其他網(wǎng)站下載的資料,均為非法盜鏈,并且不能保證您的電腦和上網(wǎng)安全。為了能更好的保證您的電腦和上網(wǎng)安全,請從http://NewDown.org下載所以本站提供的資料。

      縱觀近十年考研數(shù)學(xué)真題,大家會發(fā)現(xiàn):幾乎每一年的試題中都會有一個(gè)證明題,而且基本上都是應(yīng)用中值定理來解決問題的。但是要參加碩士入學(xué)數(shù)學(xué)統(tǒng)一考試的同學(xué)所學(xué)專業(yè)要么是理工要么是經(jīng)管,同學(xué)們在大學(xué)學(xué)習(xí)數(shù)學(xué)的時(shí)候?qū)τ谶壿嬐评矸矫娴挠?xùn)練大多是不夠的,這就導(dǎo)致數(shù)學(xué)考試中遇到證明推理題就發(fā)怵,以致簡單的證明題得分率卻極低。除了個(gè)望對有此隱患的同學(xué)有所幫助。

      2006年數(shù)學(xué)一真題第16題(1)是證明極限的存在性并求極限。只要證明

      2007年數(shù)學(xué)一第19題是一個(gè)關(guān)于中值定理的證明題,可以在直角坐標(biāo)系F(x)=f(x)-g(x)有三個(gè)零點(diǎn),兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。再如2005年數(shù)學(xué)一第18題(1)是關(guān)于零點(diǎn)存在y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個(gè)函數(shù)圖形有交點(diǎn),這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應(yīng)該看到兩函數(shù)在兩個(gè)端點(diǎn)處大小關(guān)系恰好相反,也就是差函數(shù)在兩個(gè)端點(diǎn)的值是異號的,零點(diǎn)存在定理保證了區(qū)間內(nèi)有零點(diǎn),這就證得所需結(jié)果。如果第二步實(shí)在無法完滿解決問題的話,轉(zhuǎn)第三步。

      三、逆推

      從結(jié)論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。在判定函數(shù)的單調(diào)性時(shí)需借助導(dǎo)數(shù)符號與單調(diào)性之間的關(guān)系,正常情況只需一階導(dǎo)的符號就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時(shí)需先用二階導(dǎo)數(shù)的符號判定一階導(dǎo)數(shù)的單調(diào)性,再用一階導(dǎo)的符號判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。該題中可設(shè)F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。對于那些經(jīng)常使用如上方法的同學(xué)來說,利用三步走就能輕松收獲數(shù)學(xué)證明的12分,但對于從心理上就不自信能解決證明題的同學(xué)來說,卻常常輕易丟失12分,后一部分同學(xué)請按“證明三步走”來建立自信心,以阻止考試分?jǐn)?shù)的白白流失。

      本站鄭重申明:為了您的電腦更安全,請從http://NewDown.org下載本站資料,其他網(wǎng)站下載的資料,本站一例不保證您的上網(wǎng)安全。

      最專業(yè)的學(xué)習(xí)資料下載網(wǎng)站http://NewDown.org

      第四篇:2019考研數(shù)學(xué)一復(fù)習(xí)之如何答證明題

      2019考研數(shù)學(xué)一復(fù)習(xí)之如何答證明題

      來源:智閱網(wǎng)

      證明題是數(shù)學(xué)題型中考生比較頭疼的一類,從基礎(chǔ)復(fù)習(xí)開始,就需要大家多多總結(jié),掌握方法技巧。所以,一起來看看證明題的解題技巧吧!

      1.結(jié)合幾何意義記住零點(diǎn)存在定理、中值定理、泰勒公式、極限存在的兩個(gè)準(zhǔn)則等基本原理,包括條件及結(jié)論。

      知道基本原理是證明的基礎(chǔ),知道的程度(即就是對定理理解的深入程度)不同會導(dǎo)致不同的推理能力。如某一年的考研數(shù)學(xué)一的真題要求考生證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。這個(gè)題目非常簡單,只用了極限存在的兩個(gè)準(zhǔn)則之一:單調(diào)有界數(shù)列必有極限。只要知道這個(gè)準(zhǔn)則,該問題就能輕松解決。

      2.借助幾何意義尋求證明思路。

      一個(gè)證明題,大多時(shí)候是能用其幾何意義來正確解釋的,當(dāng)然最為基礎(chǔ)的是要正確理解題目文字的含義。如某年考研數(shù)學(xué)一真題涉及到中值定理的證明題,可以在直角坐標(biāo)系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個(gè)函數(shù)除兩個(gè)端點(diǎn)外還有一個(gè)函數(shù)值相等的點(diǎn),那就是兩個(gè)函數(shù)分別取最大值的點(diǎn)(正確審題:兩個(gè)函數(shù)取得最大值的點(diǎn)不一定是同一個(gè)點(diǎn))之間的一個(gè)點(diǎn)。

      關(guān)于證明題的解題技巧,大家還可以做做湯老師的2019《考研數(shù)學(xué)接力題典1800》(數(shù)學(xué)一),書中詳細(xì)的講解和豐富的例題,可以加強(qiáng)咱們考生對于證明題等題型的解題技巧的掌握。

      第五篇:2017考研:考研數(shù)學(xué)證明題知識點(diǎn)歸納

      2017考研:考研數(shù)學(xué)證明題知識點(diǎn)歸納

      高等數(shù)學(xué)題目中比較困難的是證明題,今天凱程老師給大家整理了在整個(gè)高等數(shù)學(xué),容易出證明題的地方。

      一、數(shù)列極限的證明

      數(shù)列極限的證明是數(shù)一、二的重點(diǎn),特別是數(shù)二最近幾年考的非常頻繁,已經(jīng)考過好幾次大的證明題,一般大題中涉及到數(shù)列極限的證明,用到的方法是單調(diào)有界準(zhǔn)則。

      二、微分中值定理的相關(guān)證明

      微分中值定理的證明題歷來是考研的重難點(diǎn),其考試特點(diǎn)是綜合性強(qiáng),涉及到知識面廣,涉及到中值的等式主要是三類定理:

      1.零點(diǎn)定理和介質(zhì)定理; 2.微分中值定理;

      包括羅爾定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用來處理高階導(dǎo)數(shù)的相關(guān)問題,考查頻率底,所以以前兩個(gè)定理為主。

      3.微分中值定理

      積分中值定理的作用是為了去掉積分符號。

      在考查的時(shí)候,一般會把三類定理兩兩結(jié)合起來進(jìn)行考查,所以要總結(jié)到現(xiàn)在為止,所考查的題型。

      三、方程根的問題

      包括方程根唯一和方程根的個(gè)數(shù)的討論。

      四、不等式的證明

      五、定積分等式和不等式的證明

      主要涉及的方法有微分學(xué)的方法:常數(shù)變異法;積分學(xué)的方法:換元法和分布積分法。

      六、積分與路徑無關(guān)的五個(gè)等價(jià)條件

      這一部分是數(shù)一的考試重點(diǎn),最近幾年沒涉及到,所以要重點(diǎn)關(guān)注。

      以上是容易出證明題的地方,同學(xué)們在復(fù)習(xí)的時(shí)候重點(diǎn)歸納這類題目的解法??佳胁欢牡胤?,可以關(guān)注凱程微信公眾號“凱程考研”,第一時(shí)間發(fā)布考研資訊,精心推送考研經(jīng)驗(yàn),匯聚考研正能量,提供權(quán)威擇校擇專業(yè)指導(dǎo),答疑、求罵醒,你需要的都在這里。

      下載2018考研數(shù)學(xué):巧答證明題的3個(gè)方法word格式文檔
      下載2018考研數(shù)學(xué):巧答證明題的3個(gè)方法.doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        數(shù)學(xué)證明題解題方法

        數(shù)學(xué)證明題解題方法第一步:結(jié)合幾何意義記住零點(diǎn)存在定理、中值定理、泰勒公式、極限存在的兩個(gè)準(zhǔn)則等基本原理,包括條件及結(jié)論。知道基本原理是證明的基礎(chǔ),知道的程度(即就是......

        數(shù)學(xué)證明題證明方法(最終定稿)

        數(shù)學(xué)證明題證明方法(轉(zhuǎn))2011-04-22 21:36:39|分類:|標(biāo)簽: |字號大中小 訂閱2011/04/22從命題的題設(shè)出發(fā),經(jīng)過逐步推理,來判斷命題的結(jié)論是否正確的過程,叫做證明。要證明一個(gè)命題是......

        考研證明題

        翻閱近十年的數(shù)學(xué)真題,同學(xué)可以發(fā)現(xiàn):幾乎每一年的試題中都會有一道證明題,而且基本上都可以用中值定理來解決,重點(diǎn)考察同學(xué)的邏輯推理分析能力,但是參加研究生數(shù)學(xué)考試的同學(xué)所學(xué)......

        考研數(shù)學(xué)證明題題目11

        今天還是討論關(guān)于不等式的問題。 這次的這個(gè)不等式大家看見了一定不會陌生,因?yàn)樗悸泛苋菀拙湍贸鰜砹?。就是轉(zhuǎn)化成求一個(gè)函數(shù)的極值問題。然后解法一就誕生了。 上面的方法估......

        考研數(shù)學(xué)證明題三步走

        數(shù)學(xué)證明三步走 縱觀近十年考研數(shù)學(xué)真題,大家會發(fā)現(xiàn):幾乎每一年的試題中都會有一個(gè)證明題,而且基本上都是應(yīng)用中值定理來解決問題的。但是要參加碩士入學(xué)數(shù)學(xué)統(tǒng)一考試的同學(xué)所......

        考研數(shù)學(xué)證明題題目10

        今天來看看不等式的題目。不等式對于我們來說應(yīng)該是再熟悉不過的了,初中的時(shí)候?qū)W過一次二次不等式,高中更是系統(tǒng)學(xué)習(xí)了不等式,在考研試題里面,也不乏不等式的題目。不等式的題目......

        考研數(shù)學(xué)單選題和證明題經(jīng)典解題技巧

        考研數(shù)學(xué)單選題和證明題經(jīng)典解題技巧到了考研復(fù)習(xí)的關(guān)鍵性強(qiáng)化和沖刺階段。一些答題技巧性的掌握能夠使我們事半功倍。下面小編為2015考生們分享單選題和證明題經(jīng)典解題技巧......

        考研數(shù)學(xué):單選與證明題經(jīng)典解題技巧

        考研數(shù)學(xué):單選與證明題經(jīng)典解題技巧很多同學(xué)準(zhǔn)備考研買了各種輔導(dǎo)機(jī)構(gòu)的資料,大量練習(xí)認(rèn)為這樣的話一是能通過題復(fù)習(xí)知識點(diǎn),還有就是期望通過題海戰(zhàn)術(shù)能做到考試真題。這種盲目......