第一篇:數(shù)學(xué)概念教學(xué)的探索與研究論文
數(shù)學(xué)的實(shí)際經(jīng)驗(yàn)表明,學(xué)生正確理解數(shù)學(xué)概念是掌握數(shù)學(xué)基礎(chǔ)知識的前提.因此,在數(shù)學(xué)中一定要把握住數(shù)學(xué)概念的教學(xué).
數(shù)學(xué)概念的教學(xué)過程就是要使學(xué)生認(rèn)知概念的來源和意義,理解概念的性質(zhì)和相互關(guān)系,會運(yùn)用概念解決問題的過程.?dāng)?shù)學(xué)概念的教學(xué)法就是實(shí)現(xiàn)這個過程的手段.
數(shù)學(xué)概念的教學(xué)是一切數(shù)學(xué)知識從初步認(rèn)識、深刻理解到熟練應(yīng)用的基礎(chǔ),它是學(xué)生學(xué)好數(shù)學(xué)的前提和保障.
一、創(chuàng)設(shè)情景,解釋數(shù)學(xué)概念的形成過程
數(shù)學(xué)概念的形成往往都?xì)v經(jīng)前人長期觀察、抽象概括、創(chuàng)造的漫長過程.這樣長期的探索過程中往往蘊(yùn)含著數(shù)學(xué)中的一些重要的思想方法.因此,在數(shù)學(xué)中我精心設(shè)計(jì),創(chuàng)設(shè)情境,揭示概念的形成過程,引導(dǎo)學(xué)生領(lǐng)悟形成概念的方法,使學(xué)生處于興奮狀態(tài),成為自覺主動地學(xué)習(xí)的主體.
1.逐步形成概念
當(dāng)學(xué)生從直觀上認(rèn)識了兩條異面直線所成的角之后,為了使學(xué)生能從感性認(rèn)識上升到理性認(rèn)識,逐步形成概念,提如下幾個問題與學(xué)生一起探討:
(1)兩條直線相交就構(gòu)成角,而兩條異面直線不相交,哪來的“角”呢?如何規(guī)定兩條異面直線所形成的面呢?
(2)能否找出兩條相交直線所形成的面來確定兩條異面直線所形成的角呢?(引導(dǎo)學(xué)生議論,并歸納學(xué)生作“角”的三種基本方法,同時用動畫給予演示)
①作a’//a,且a’與b相交,則a’與b所形成的銳角(或直角)就是a與b所成的角.
②作b’//b,且b’與a相交,a與b’所成的銳角(或直角)就是a與b所成的角.
③在空間任取一點(diǎn)O,過O作a’//a,b’//b,a’與b’所成的銳角(或直角)就是a、b所成的角.
(3)據(jù)(2)的分析,a與b所成的角似乎有很多個,究竟哪個稱得上是a、b所成的角?為什么?
啟發(fā)學(xué)生根據(jù)等角定理的推論,說明這些角都相等.因此,這樣做出的角是合理的,唯一的.
(4)引導(dǎo)學(xué)生討論得出如下結(jié)論:
①兩條異面直線所成的角的大小,是由這兩條異面直線的相互位置關(guān)系決定的,與角的頂點(diǎn)O的位置的取法無關(guān);
②正因?yàn)辄c(diǎn)O的位置可以任意選取,這就給我們確定兩條異面直線所成的角帶來了方便.在運(yùn)用時為了簡便可以把點(diǎn)O取在兩條異面直線中每一條上;
③要找到兩條異面直線所成的角,關(guān)鍵是經(jīng)過平移,把兩條異面直線所形成的角轉(zhuǎn)化為兩條相交直線所成的銳角(或直角).因此,若兩條異面直線所成的角為θ時,0°<θ≤90°
④當(dāng)兩異面直線所成的角是直角時,則說這兩條異面直線互相垂直,它們不一定相交.
(5)現(xiàn)在我們可以總結(jié)出兩條異面直線所成的角的定義.請同學(xué)們總結(jié)一下,該怎樣定義?(學(xué)生敘述后,課本中的定義)
二、注重關(guān)鍵字眼,強(qiáng)調(diào)概念的內(nèi)涵與外延
在課堂教學(xué)中,我發(fā)現(xiàn)有些概念的定義中某些關(guān)鍵字眼不易被學(xué)生所理解或容易被忽略;有些概念的條件較多,學(xué)生常常顧此失彼,不易全面掌握;某些概念與它的鄰近概念相似,不易區(qū)別,使學(xué)生認(rèn)識模糊,易疏漏.在教學(xué)中,教師除了引用典型的例子從正面加深對概念的理解、鞏固之外,還要從反面來加深學(xué)生對概念的內(nèi)涵與外延的理解.
(1)如在雙曲線概念的教學(xué)中,當(dāng)?shù)贸鲭p曲線定義:“平面內(nèi)與兩定點(diǎn)F1、F2的距離的差的絕對值等于常數(shù)(小于|F1F2|)的點(diǎn)的軌跡叫雙曲線”之后,我讓學(xué)生討論這樣的幾個問題:將定義中的“小于”改為“等于”或“大于”,其點(diǎn)的軌跡又是什么呢?
(2)將“絕對值”三個字去掉,其結(jié)果又如何呢?
(3)令定義中的常數(shù)為0,其余不變,其點(diǎn)的軌跡又是什么呢?
(4)將括號中的“小于|F1F2|”去掉后如何討論點(diǎn)的軌跡?通過上述問題的討論與解答,并結(jié)合動畫演示,使學(xué)生們對于雙曲線的定義中的“絕對值”、“常數(shù)小于|F1F2|”以及整個概念就有了較為深刻的理解,從而深化了知識.
三、加強(qiáng)聯(lián)系,是數(shù)學(xué)概念系統(tǒng)化
有些概念的理解,一般不是一節(jié)兩節(jié)課就可以完成的,往往要在一些相關(guān)概念都學(xué)過之后,通過單元小結(jié)復(fù)習(xí)或階段復(fù)習(xí)的方式才能使學(xué)生對所學(xué)的有關(guān)概念系統(tǒng)化、網(wǎng)絡(luò)化,在縱橫聯(lián)系中對概念得到深刻認(rèn)識.
如在立體幾何教學(xué)內(nèi)容中,有關(guān)角的概念是非常多的.學(xué)生往往是上課能聽懂,但課下大腦很混亂,很難把角運(yùn)用自如.為此我在講完二面角這一節(jié)后,安排一節(jié)專題課:有關(guān)空間角.
(1)平面角.從一點(diǎn)出發(fā)的兩條射線所組成的圖形(靜態(tài)定義);以一條射線的端點(diǎn)為原點(diǎn),旋轉(zhuǎn)所成的圖形(順時針旋轉(zhuǎn)為負(fù)角,逆時針旋轉(zhuǎn)為正角,不做任何旋轉(zhuǎn)為零角)(動態(tài)定義)
(2)異面直線所成的角.在空間任取一點(diǎn)分別引兩條異面直線的平行線所成的銳角或直角,叫做兩條異面直線所成的角.
(3)直線與平面所成的角,若直線在平面內(nèi)或直線與平面平行,規(guī)定他們所成的角為0°;若直線與平面垂直規(guī)定它們所成的角為90°;平面的一條斜線和它在平面上的射影所成的銳角,叫做這條斜線和這個平面所成的角.
(4)二面角的平面角.以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個面內(nèi)分別作垂直與棱的兩條射線,這兩條射線所成的角叫二面角的平面角.
通過對這些概念的類比聯(lián)系,使學(xué)生進(jìn)一步認(rèn)識到空間的“異面直線所成的角”、“直線與平面所成的角”、“二面角”都是在“平面角”概念的基礎(chǔ)上發(fā)展和推廣的.
四、提煉概念定義中的精華,教給學(xué)生方法
數(shù)學(xué)概念的定義描述一般都是非常嚴(yán)密抽象的,單純地要求學(xué)背不是教學(xué)目的.學(xué)習(xí)概念的主要目的是為了應(yīng)用,而應(yīng)用的結(jié)果又會加深對概念的理解.從而使學(xué)生在用概念的同時掌握概念.綜上所述,數(shù)學(xué)概念的教學(xué)應(yīng)以“啟發(fā)式”和“教師為主導(dǎo),學(xué)生為主體”的教學(xué)思想為指導(dǎo),引導(dǎo)全體學(xué)生進(jìn)入積極的思維狀態(tài),學(xué)會分析問題和解決問題的方法,從而實(shí)現(xiàn)教學(xué)大綱中提出的培養(yǎng)學(xué)生分析問題和解決問題能力的要求.
第二篇:高中歷史概念教學(xué)探索論文
一、重返具體時空,認(rèn)識歷史概念的內(nèi)涵與外延
1.創(chuàng)設(shè)情境,了解文藝復(fù)興時期人文主義的內(nèi)涵。歷史概念是歷史事物本質(zhì)屬性的反映,是人們對具體歷史事物通過比較、分析、抽象、概括等思維活動而形成的。因此,歷史概念的內(nèi)涵是概括而深刻的。對正處于形象思維向理性思維過渡的高中生而言,要準(zhǔn)確理解歷史概念的內(nèi)涵往往有一定的難度,因此教學(xué)中需要將抽象的歷史概念具象化。教學(xué)中筆者提供了薄伽丘《十日談》中綺思夢達(dá)沖破門第觀念,與親王侍從相戀的故事、皮科德拉米蘭多拉《論人的尊嚴(yán)》講演的節(jié)選及反映當(dāng)時意大利人對假發(fā)等裝飾品追求的現(xiàn)象等三則材料,創(chuàng)設(shè)歷史情境,引導(dǎo)學(xué)生探究:上述材料體現(xiàn)了文藝復(fù)興時期意大利怎樣的社會現(xiàn)象?反映了當(dāng)時怎樣的價值取向?據(jù)此,你認(rèn)為該如何定義文藝復(fù)興時期的人文主義?通過上述情景設(shè)置,引導(dǎo)學(xué)生置身于文藝復(fù)興時期的歐洲社會場景中,把抽象的人文主義直觀、形象地展示在學(xué)生面前,從而使學(xué)生深刻認(rèn)識到:反對神權(quán)統(tǒng)治,追求個性解放和思想自由是文藝復(fù)興時期人文主義的核心內(nèi)涵。2.重返現(xiàn)場,理解文藝復(fù)興時期人文主義的外延。任何歷史概念都包括內(nèi)涵與外延兩個維度,完整地理解歷史概念還需準(zhǔn)確理解其外延,否則對歷史概念的理解就容易片面和孤立。這就要求在教學(xué)中應(yīng)引導(dǎo)學(xué)生重返歷史現(xiàn)場,在具體的時空背景下理解歷史概念。教學(xué)中筆者給學(xué)生提供了反映中世紀(jì)末意大利經(jīng)濟(jì)、政治和文化教育等社會現(xiàn)象的典型材料,引導(dǎo)學(xué)生思考討論:材料反映了中世紀(jì)后期意大利發(fā)生了怎樣的社會變革?這些變革反映了當(dāng)時歐洲社會怎樣的時代特征?這些特征與當(dāng)時人文主義的興起有何內(nèi)在聯(lián)系?通過分析使學(xué)生認(rèn)識當(dāng)時歐洲社會的現(xiàn)狀:經(jīng)濟(jì)上,莊園式自然經(jīng)濟(jì)強(qiáng)大、教會占有地產(chǎn)最多,同時資本主義萌芽產(chǎn)生發(fā)展、市民階層壯大、資產(chǎn)階級興起;政治上,國家分裂、教權(quán)高于王權(quán),同時統(tǒng)一的中央集權(quán)和城市自治出現(xiàn)、民族國家開始形成;思想文化上,神學(xué)壟斷精神生活,同時大學(xué)人文主義教育興起;社會生活上,神學(xué)控制社會生活,同時市民開始追求現(xiàn)世享樂。由此使學(xué)生認(rèn)識到當(dāng)時歐洲由古代社會向近代社會轉(zhuǎn)型的時代特征,進(jìn)而引導(dǎo)學(xué)生理解文藝復(fù)興時期的人文主義是這一社會轉(zhuǎn)型時期的時空中具體的政治、經(jīng)濟(jì)、社會環(huán)境的產(chǎn)物,并進(jìn)而推動歐洲社會轉(zhuǎn)型的進(jìn)一步發(fā)展。
二、建構(gòu)段落時空,理解歷史概念的變化與延續(xù)
1.微觀視角,理解文藝復(fù)興時期人文主義的發(fā)展演變。歷史是不斷發(fā)展變化的,作為歷史事物反映的歷史概念也是動態(tài)而非一成不變的,其內(nèi)涵會隨著歷史的發(fā)展而變化。因此,教學(xué)中應(yīng)幫助學(xué)生理解歷史概念是如何發(fā)展演變的,否則學(xué)生容易造成困惑。教學(xué)中筆者要求學(xué)生閱讀有關(guān)薄伽丘《十日談》中綠鵝的故事,觀察米開朗琪羅的雕塑作品《大衛(wèi)》的細(xì)節(jié),并閱讀莎士比亞《哈姆雷特》中贊美人的內(nèi)容等材料,引導(dǎo)學(xué)生討論探究:材料反映文藝復(fù)興不同時期對人的贊美有何異同?為什么?通過生生合作與師生合作,使學(xué)生認(rèn)識到:在文藝復(fù)興時期,歐洲人提倡“人性”,反對“神性”,謳歌人的價值與尊嚴(yán),提倡人的自由個性,積極追求現(xiàn)實(shí)幸福和世俗享樂的觀念是始終不變的,但在不同時期,其具體表現(xiàn)有所區(qū)別:14世紀(jì)時期,薄伽丘側(cè)重于肯定人的本能欲望;
15、16世紀(jì),米開朗琪羅側(cè)重于贊美人外在的自然美;而16、17世紀(jì),莎士比亞則大力謳歌人性內(nèi)在的豐富感情與高尚尊嚴(yán)。之所以會發(fā)生這種變化,是因?yàn)槠陂g文藝復(fù)興運(yùn)動波及范圍不斷擴(kuò)大,資本主義經(jīng)濟(jì)經(jīng)過二三百年的發(fā)展,資產(chǎn)階級力量進(jìn)一步壯大,人文主義自然也隨之逐步深化。2.宏觀角度,認(rèn)識不同歷史階段人文主義的延續(xù)變化。任何歷史事物總是與相鄰的歷史事物相聯(lián)系,而不會孤立地存在于某一具體的時空點(diǎn)上。因此,教學(xué)中應(yīng)將歷史概念放在歷史的長河中進(jìn)行考察分析,從整體上把握歷史概念的發(fā)展趨勢,進(jìn)而幫助學(xué)生認(rèn)識歷史演變的內(nèi)在規(guī)律。教學(xué)中筆者引導(dǎo)學(xué)生以文藝復(fù)興時期的人文主義為原點(diǎn),通過問題探究將學(xué)生的思維向前和往后延伸:(1)你認(rèn)為文藝復(fù)興運(yùn)動是人文主義的復(fù)興還是發(fā)展,為什么?(2)為什么人們一般將啟蒙運(yùn)動而非文藝復(fù)興運(yùn)動當(dāng)做西方人文主義的成熟階段?說說你的理解。通過點(diǎn)撥、總結(jié),不斷地將學(xué)生的思維引向深入,使學(xué)生認(rèn)識到:文藝復(fù)興通過對古希臘羅馬文化的研究,繼承了古希臘人文主義中以人為本、重視人的價值與作用的思想,主張以人為中心,把人性從宗教束縛中解放出來,因此是西方人文主義的復(fù)蘇與發(fā)展。但與啟蒙運(yùn)動相比,文藝復(fù)興運(yùn)動的革命性相對較弱。文藝復(fù)興運(yùn)動主要反對天主教會的禁欲主義及封建領(lǐng)主的割據(jù)狀態(tài),企圖借助民族統(tǒng)一的君主專制政體來發(fā)展資本主義經(jīng)濟(jì)。而啟蒙運(yùn)動除了反對教權(quán)主義外,還強(qiáng)烈反對封建專制和等級制度,提出自由、平等、人權(quán)等理念并以這些理念為指導(dǎo),建立反映資產(chǎn)階級愿望的政治制度。因此,啟蒙運(yùn)動時期的人文主義思想體系更為完整。通過上述分析,不僅有利于學(xué)生從西方人文主義發(fā)展演變進(jìn)程中整體認(rèn)知人文主義這一歷史概念,也有利于加深學(xué)生對文藝復(fù)興時期人文主義的認(rèn)識。
三、聯(lián)系特定時空,體會歷史概念的統(tǒng)一與多樣
歷史概念是一系列歷史事物共同屬性的反映。教學(xué)中我們較多關(guān)注歷史概念的共性,而忽視歷史概念的個性。事實(shí)上由于歷史事物產(chǎn)生的時空不同,歷史概念既有共性,亦有個性。因此,教學(xué)中還應(yīng)聯(lián)系特定時空,體會歷史概念的統(tǒng)一與多樣,以更有利于準(zhǔn)確把握歷史概念。為此,教學(xué)中筆者采取了以下兩個維度展開教學(xué)。1.分析同一時期中西人文主義的不同走向。以文藝復(fù)興為中心,建構(gòu)14——17世紀(jì)中西歷史發(fā)展的體系框架,認(rèn)識同一時期中西人文主義的不同發(fā)展走向。教學(xué)中筆者引導(dǎo)學(xué)生閱讀但丁和王夫之對人的闡述的相關(guān)材料,引導(dǎo)學(xué)生探究問題:(1)比較兩則材料,概括意大利人文主義人本觀與明清之際儒家人文觀的異同。(2)為什么東西方相似的文化現(xiàn)象其命運(yùn)卻截然不同,西方的人文主義成為激蕩社會的文化思潮,而中國的人文主張卻“胎死腹中”?結(jié)合所學(xué)知識分析其原因。通過探究可以發(fā)現(xiàn):東西方的思想家都抨擊了原有統(tǒng)治思想中的非理性成分,歌頌了人的價值與欲望。但西方人文主義者歌頌的是具有獨(dú)立個性與自由意志的個體的人,而明清思想家主張以封建禮教制約人的私欲,歌頌的是恪守封建儒家倫理規(guī)范的人。之所以當(dāng)時東西方的思想具有相似性,主要是由于它們都興起于東西方的社會轉(zhuǎn)型時期。而兩者的歷史影響有所不同,主要是因?yàn)樗鼈兯幍恼巍⒔?jīng)濟(jì)、思想文化狀況及思想來源不一樣。2.不同時期中西方人文主義的不同特征。以人文主義為主題,分析文藝復(fù)興與新文化運(yùn)動時期中西方人文主義的不同特點(diǎn)。具體教學(xué)環(huán)節(jié)如下:呈現(xiàn)材料:李大釗是新文化運(yùn)動的領(lǐng)袖之一,他強(qiáng)調(diào)政治機(jī)關(guān)是為全體人民的,每個人都是為社會國家做有益工作的人。他就把個人與社會相聯(lián)系,把個人解放與民族救亡相聯(lián)系。新文化運(yùn)動所舉起的資產(chǎn)階級人文主義的大旗,也就指向了民族的救亡圖存。它的價值取向不再是文藝復(fù)興運(yùn)動中強(qiáng)調(diào)的個人的價值和情欲以及把個人與社會割裂的極端個人主義,而是中華民族幾千年來“天下興亡,匹夫有責(zé)”的愛國主義、集體主義的傳統(tǒng)?!詈缎挛幕\(yùn)動與文藝復(fù)興比較》探究問題:新文化運(yùn)動時期的人文主義與文藝復(fù)興時期的人文主義有何不同?并結(jié)合所學(xué)知識分析其成因。從材料可以看出,新文化運(yùn)動時期的人文主義側(cè)重于民族的救亡圖存,強(qiáng)調(diào)個人價值與民族利益相結(jié)合,而文藝復(fù)興時期的人文主義則側(cè)重于個人主義,重視個性解放和個人價值。之所以會產(chǎn)生這些差異,主要是因?yàn)槲乃噺?fù)興時期人文主義的產(chǎn)生是新興資本主義經(jīng)濟(jì)發(fā)展的自然結(jié)果和必然要求,而中國新文化運(yùn)動時期的人文主義則是民族危機(jī)空前嚴(yán)重,愛國志士們?yōu)橥炀让褡逦M龆鴮で缶葒让竦缆返慕Y(jié)果。
總之,時空觀念對準(zhǔn)確理解歷史概念,構(gòu)建歷史聯(lián)系,進(jìn)而準(zhǔn)確認(rèn)識歷史規(guī)律有著基礎(chǔ)性的作用。重返具體時空,挖掘歷史概念與時空背景的內(nèi)在聯(lián)系,加深對歷史概念的內(nèi)涵與外延的認(rèn)識;建構(gòu)階段時空,側(cè)重時序觀念,在動態(tài)的時空發(fā)展中理解歷史概念的發(fā)展演變;聯(lián)系特定時空,側(cè)重空間觀念,還原歷史概念的豐富性與復(fù)雜性。目前,如何運(yùn)用剛頒布的新課程標(biāo)準(zhǔn)指導(dǎo)具體的教學(xué)實(shí)踐,以達(dá)成新一輪課程改革的目標(biāo),是一線教師應(yīng)該積極面對的問題。上述實(shí)踐只是筆者對運(yùn)用時空觀念進(jìn)行歷史概念教學(xué)的一次嘗試,愿為拋磚引玉。
【注釋】
[1]聶幼犁:《歷史課程與教學(xué)論》,杭州:浙江教育出版社,2003年,第109頁。
[2]趙恒烈:《如何糾正學(xué)生掌握的歷史概念中的常見錯誤》,《歷史教學(xué)》1963年第5期。
[3]中華人民共和國教育部制定:《普通高中歷史課程標(biāo)準(zhǔn)》(2017年版),北京:人民教育出版社,2018年,第5頁。
第三篇:小學(xué)數(shù)學(xué)概念教學(xué)有效性的研究論文
小學(xué)數(shù)學(xué)概念教學(xué)有效性的研究
摘要:隨著新一輪的基礎(chǔ)教育課程改革的不斷深入,新課程標(biāo)準(zhǔn)中對于概念的要求也做出了相應(yīng)的調(diào)整。指出“改進(jìn)數(shù)學(xué)概念教學(xué),強(qiáng)調(diào)通過實(shí)際情景使學(xué)生體驗(yàn)、感受和理解?!痹S多重要的概念,都要求在現(xiàn)實(shí)的情景中去理解、恢復(fù)“來源于生活,又服務(wù)于生活的本來面目”,可見,新課程標(biāo)準(zhǔn)對數(shù)學(xué)概念教學(xué)有了新的規(guī)定和更高的要求??v觀教材,不難發(fā)現(xiàn),每一個重要的概念的引入,都要通過一些問題情景,經(jīng)過師生的共同探究、總結(jié)和歸納,從而很自然的導(dǎo)出概念,實(shí)現(xiàn)從感性認(rèn)識到理性認(rèn)識的實(shí)踐。對數(shù)學(xué)課堂教學(xué)進(jìn)行分析調(diào)查,發(fā)現(xiàn)在小學(xué)數(shù)學(xué)概念的教學(xué)中目前概念教學(xué)存在的問題主要表現(xiàn)在:比較忽視概念的形成過程,往往把一個新的概念和盤托出,讓學(xué)生死記硬背法則、定義;比較忽視新舊概念間的聯(lián)系,許多本來是有聯(lián)系的概念,卻分散、孤立不成系統(tǒng),(比如:質(zhì)數(shù)的的概念是建立在約數(shù)概念的基礎(chǔ)上的)不能幫助學(xué)生形成良好的認(rèn)知結(jié)構(gòu);比較忽視概念的靈活應(yīng)用?;趯σ陨犀F(xiàn)象的認(rèn)識和思考,就確定了組織這次研究活動。本次活動的意義旨在幫助學(xué)生在獲取數(shù)學(xué)知識的同時,進(jìn)一步培養(yǎng)各種數(shù)學(xué)能力。更重要的是通過本次研究學(xué)習(xí),使老師們對概念教學(xué)的教學(xué)模式和素材的選取有了全新的認(rèn)識。因此,抓好概念教學(xué)是提高數(shù)學(xué)教學(xué)質(zhì)量的關(guān)鍵。
關(guān)鍵詞:小學(xué)數(shù)學(xué) 概念 有效性 研究
一、研究小學(xué)數(shù)學(xué)概念教學(xué)有效性 1.教學(xué)目標(biāo)的有效性
確立教學(xué)目標(biāo)的有效性是指教學(xué)目標(biāo)確立要遵循有效教學(xué)的價值取向。即:目標(biāo)確立應(yīng)當(dāng)是開放的,不應(yīng)該是封閉的;應(yīng)當(dāng)是全面的,而不是單一的;目標(biāo)的確立應(yīng)尊重學(xué)生的學(xué)習(xí)需要,滿足學(xué)生的學(xué)習(xí)興趣;目標(biāo)的確立要符合發(fā)展學(xué)生人文素養(yǎng)的要求,即在課程教學(xué)目標(biāo)中整合人文精神的滲透;目標(biāo)的確立還要考慮教師自身在課堂教學(xué)中教學(xué)個性發(fā)展方向。
2.教材處理的有效性
教材本身是已經(jīng)篩選和提煉了的學(xué)習(xí)資源,但是,它不是唯一的學(xué)習(xí)資源,就教材本身而言,教材是教學(xué)內(nèi)容的重要載體,但是學(xué)習(xí)并不僅僅局限于學(xué)科知識,還應(yīng)包括引導(dǎo)學(xué)生利用已有的知識和經(jīng)驗(yàn),親身經(jīng)歷經(jīng)實(shí)際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過程,能夠使學(xué)生獲得對數(shù)學(xué)理解的同時,在思維能力、情感態(tài)度與價值觀等多方面得到進(jìn)步和發(fā)展。同時也應(yīng)有利于教師根據(jù)學(xué)生的實(shí)際情況,創(chuàng)造性地開展教學(xué)活動。有利于培養(yǎng)學(xué)生的創(chuàng)新精神和實(shí)踐能力、收集和處理信息的能力、獲取新知識的能力、分析和解決問題的能力以及交流與合作的能力。所以如何有效地利用教材,是有效開展課堂教學(xué)的關(guān)鍵。
3.教、學(xué)方式與方法運(yùn)用的有效性
有效的教、學(xué)方式是課堂教學(xué)效率的提高的有力保障。在轉(zhuǎn)變學(xué)生學(xué)習(xí)方式的同時要轉(zhuǎn)變教師的教學(xué)方式,要有利于學(xué)生的發(fā)展,要以學(xué)法的改革帶動教法的改革,保證課堂教學(xué)的科學(xué)性、靈活性、創(chuàng)造性,為課堂教學(xué)注入新的活力。
二、探究出小學(xué)數(shù)學(xué)概念教學(xué)模式
概念是客觀事物的本質(zhì)屬性在人們頭腦中的反映,對于小學(xué)生來說,概念教學(xué)的過程是認(rèn)識從感性上升到理性的過程。通過一年的摸索實(shí)踐,我將小學(xué)概念教學(xué)模式操作程序分為五個階段:概念的引入——概念的形成——概念的內(nèi)化——概念的鞏固——概念的發(fā)展。具體說來我歸納為下面五句話:
1.創(chuàng)設(shè)情境,引入概念,明確目標(biāo)
蘇霍姆林斯基說:“讓學(xué)生體驗(yàn)到一種自己在親身參與掌握知識的情感,乃是喚起少年特有的對知識的興趣的重要條件?!?人們感知客觀世界,從外界獲取知識信息,80%的信息是通過人的多種感官得到的。錢學(xué)森提出,直觀性教學(xué)是學(xué)生產(chǎn)生形象思維的源泉,而形象思維帶有強(qiáng)烈的情感色彩。,因此引入是否得法,會直接影響學(xué)生的學(xué)習(xí)效果。數(shù)學(xué)概念比較抽象,容易讓學(xué)生覺得枯燥,而小學(xué)生認(rèn)識事物、理解概念主要是憑借事物的具體形象和表象進(jìn)行的,因此創(chuàng)設(shè)有趣的情境,激發(fā)學(xué)生產(chǎn)生探求新知的強(qiáng)列興趣,很有研究的必要。在概念教學(xué)的引入環(huán)節(jié),我總結(jié)出下列幾種主要引入方法:(1)從學(xué)生比較熟悉的實(shí)際事物中引入。提供足夠的直觀感性材料,讓學(xué)生通過看、聽、摸、做等,豐富他們的感性認(rèn)識,使抽象的概念具體化,從而引出概念。(2)從舊概念引入。有些概念之間聯(lián)系十分緊密,在學(xué)生已有的概念基礎(chǔ)上,引入新的概念,便于學(xué)生理解、掌握新知識,復(fù)習(xí)舊知識,同時又強(qiáng)化了新舊知識的內(nèi)在聯(lián)系,使學(xué)生有一個較為完整的概念體系。(3)通過計(jì)算觀察引入。這種引入通常適用于揭示概念的屬性、基本法則中。
2.操作感知,運(yùn)用遷移,掌握概念
感知形象是兒童學(xué)習(xí)數(shù)學(xué)的重要一環(huán),也是為他們打開數(shù)學(xué)大門的閃光的“金鑰匙”。在概念引入的基礎(chǔ)上,教師應(yīng)以足夠的感性材料,組織學(xué)生參與概念的形成過程,在快樂的感悟體驗(yàn)中,主動地探究概念的內(nèi)在本質(zhì)。通過教學(xué)實(shí)踐,我們的實(shí)驗(yàn)老師已能主動地從學(xué)生角度去思索,想到學(xué)生需要什么,腦子里會想些什么,學(xué)好本知識概念的難點(diǎn)在哪里,如何引導(dǎo)學(xué)生通過體驗(yàn)感悟,填充好新舊知識間的空缺,從而主動參與新概念的構(gòu)建過程。
3.比較綜合,邏輯抽象,促進(jìn)內(nèi)化
學(xué)習(xí)數(shù)學(xué)唯一正確的方法是實(shí)行再創(chuàng)造。學(xué)習(xí)不應(yīng)看成學(xué)生對于教師所授予的知識的被動接受,而是以一個學(xué)生已有的知識和經(jīng)驗(yàn)為基礎(chǔ)的新發(fā)現(xiàn)與新理解過程,教師的任務(wù)就應(yīng)當(dāng)是引導(dǎo)和幫助學(xué)生進(jìn)行再創(chuàng)造工作而不是把現(xiàn)成的知識灌輸給學(xué)生。
實(shí)踐中,我主要采取了:創(chuàng)設(shè)認(rèn)知情境、設(shè)置矛盾沖突、抓關(guān)鍵詞、運(yùn)用變式、比較異同等合理運(yùn)用比較、引導(dǎo)抽象概括等方法引導(dǎo)學(xué)生達(dá)到概念內(nèi)化效果。課題實(shí)踐讓我們明白,科學(xué)的運(yùn)用方法,可以有效促進(jìn)學(xué)生概念內(nèi)化,真正產(chǎn)生學(xué)生自己的數(shù)學(xué)理解。
不同概念之間的聯(lián)系通過聯(lián)系以學(xué)習(xí)新概念。數(shù)學(xué)中的任何一個概念,只有與其他概念相聯(lián)系,才能生成和發(fā)展。重視概念之間的聯(lián)系,是概念理解的重要方面。利用已有的概念來定義新概念,同化新概念是 數(shù)學(xué)中常見的,在此不再舉例闡述。
通過聯(lián)系以學(xué)習(xí)思想方法。概念和概念之間的關(guān)系有強(qiáng)抽象、弱抽象、廣義抽象的關(guān)系,因而概念之間的聯(lián)系包含著數(shù)學(xué) 方法。它能使人高屋建瓴地理解數(shù)學(xué)。如平行四邊形通過“ 割補(bǔ)” 的方法化歸為矩形;三角形、長方形、正方形、平行四邊形的面積 公式都可統(tǒng)一到梯形的面積公式;看上去不相干的“ 整數(shù)加法”、“ 分?jǐn)?shù)加法”“、小數(shù)加法”都可統(tǒng)一到“ 單位相同的數(shù)相加”,等。在教學(xué)中,教師引導(dǎo)學(xué)生在不同概念之間建立聯(lián)系的時候,就必然會滲透數(shù)學(xué)思想方法的學(xué)習(xí)。
通過聯(lián)系以形成概念系統(tǒng)。引導(dǎo)學(xué)生弄清概念之間的縱向聯(lián)系,形成概念小系統(tǒng)。如整除、倍數(shù)、公倍數(shù)、最小公倍數(shù);整數(shù)、約數(shù)、公約數(shù)、最大公約數(shù)等都是縱向發(fā)展形成的概念系統(tǒng)。也可橫向組織成小系統(tǒng)。如最小公倍數(shù)、最大公約數(shù)、分解質(zhì)因 數(shù)、質(zhì)因數(shù)、短除法等就是橫向聯(lián)系在一起的系統(tǒng)。再如“ 除法”“ 分?jǐn)?shù)”“ 比”看上去是三個“ 距離”較遠(yuǎn)的概念,通過它們橫向聯(lián)系類比,能加深理解。
4.多層訓(xùn)練,解決問題,鞏固概念
學(xué)習(xí)概念的最終目的是為了運(yùn)用概念來解決實(shí)際問題。只有把學(xué)到的知識運(yùn)用到實(shí)踐中,學(xué)習(xí)才是有意義的。概念教學(xué)安排的練習(xí)類型是多層次、多角度的,既要注意概念的關(guān)鍵性,又要注意概念的綜合性。研究中,我把關(guān)注的目光經(jīng)常性地投向?qū)W生的作業(yè)練習(xí)中,為起到鞏固、深化概念的作用,我要求概念的練習(xí)課要有目的性、針對性、層次性、趣味性。形成基本練習(xí)→變式練習(xí)→綜合練習(xí)的結(jié)構(gòu)。重視相近相似、易錯易混的對比練習(xí),相關(guān)概念結(jié)合練,易混概念對比練,新概念要及時練,重點(diǎn)概念反復(fù)練。在概念教學(xué)中基本注重了六種練習(xí)方法:操作演示、反饋舉例、推理判斷、嘗試錯誤、變換敘述、整理歸納。既注意概念的鞏固,又重視了思維能力的培養(yǎng)。5.檢測反饋,構(gòu)建網(wǎng)絡(luò),發(fā)展概念
小學(xué)數(shù)學(xué)概念間是互為聯(lián)系的,絕不應(yīng)孤立存在的。研究概念教學(xué)必須遵循數(shù)學(xué)教學(xué)的基本規(guī)律,將“知識間的內(nèi)在聯(lián)系”觀念貫穿于全過程,突出知識與生活經(jīng)驗(yàn)間的緊密聯(lián)系、同一概念不同表示方式之間的聯(lián)系、不同概念之間的聯(lián)系,將新知嫁接在原來的知識樹上,從而使之成為學(xué)生個人內(nèi)部知識網(wǎng)絡(luò)的一部分,使學(xué)生掌握數(shù)學(xué)概念呈現(xiàn)出一種發(fā)展的動態(tài)。
我歸納的以上五個步驟不是僵化一成不變的,在不同的概念教學(xué)中更需要靈活處理,比如正確處理“淡化”與“強(qiáng)化”間的關(guān)系,如在教學(xué)《百分?jǐn)?shù)》等數(shù)的概念時,我們淡化了操作,但強(qiáng)化了舉例;教學(xué)《長方形的面積》等圖形概念時,我們淡化了情境,卻強(qiáng)化了學(xué)生的動手操作;教學(xué)《克、千克》《時分秒》《年月日》這些概念,我更強(qiáng)化概念與生活間的聯(lián)系。在具體地教學(xué)過程中,我還可以調(diào)整以上五個環(huán)節(jié)的順序進(jìn)行靈活變化。
三、改進(jìn)當(dāng)前自身概念教學(xué)現(xiàn)狀,構(gòu)建小學(xué)數(shù)學(xué)概念教學(xué)模式,提升自身的教學(xué)能力及教育科研能力
(一)關(guān)注教學(xué)過程和思想方法的有機(jī)統(tǒng)一
教學(xué)過程體現(xiàn)概念的形成過程,并讓學(xué)生經(jīng)歷這一過程的教學(xué)理念已成為廣大教師的共識并有意識地落實(shí)在教學(xué)實(shí)踐中,通過讓學(xué)生動手實(shí)踐、活動討論、合作交流等多中學(xué)習(xí)方式,經(jīng)歷體驗(yàn)數(shù)學(xué)學(xué)習(xí)過程。
我們都知道數(shù)學(xué)概念與數(shù)學(xué)思想方法是新教材體系的兩條主線。數(shù)學(xué)概念是明線,寫在教材里;數(shù)學(xué)思想方法是暗線,體現(xiàn)在知識的形成過程中。對于數(shù)學(xué)概念教師們大多能夠根據(jù)教學(xué)目標(biāo)扎實(shí)施教,而對數(shù)學(xué)思想方法的滲透往往視而不見或者認(rèn)為點(diǎn)破了似乎拔高了教學(xué)目標(biāo)而顯得遮遮羞羞。我們認(rèn)為,在數(shù)學(xué)概念的形成過程中滲透數(shù)學(xué)思想方法而加以深化其實(shí)對于學(xué)生學(xué)習(xí)能力的提高具有潛移默化的促進(jìn)作用。如有一教師在教學(xué)“高不變的性質(zhì)”時,先是通過情景呈現(xiàn)板例“24÷6=4”,讓學(xué)生寫出商是4的算式,觀察“被除數(shù)、除數(shù)和商的變化”讓學(xué)生大膽提出、猜測。通過活動研究,進(jìn)一步驗(yàn)證猜測,完善規(guī)律,最后適當(dāng)應(yīng)用規(guī)律。教師引導(dǎo)反思學(xué)習(xí)過程中就大膽地提出這節(jié)課的學(xué)習(xí)過程和方法,即:提出猜測、驗(yàn)證猜測、完善規(guī)律、應(yīng)用規(guī)律。學(xué)生不僅對“商不變的性質(zhì)“的內(nèi)涵有了全面深刻的理解,更可貴的是對數(shù)學(xué)的思想方法的認(rèn)識得到提升,學(xué)習(xí)能力得到不斷發(fā)展。
教學(xué)實(shí)踐中,我們的教師往往對數(shù)學(xué)思想方法避而讓之,甚至還被扣上超越目標(biāo)的高帽子。在一次教研活動,執(zhí)教教師在教學(xué)“
6、7的認(rèn)識”后安排“連線練習(xí)”,教師表達(dá)了“一一對應(yīng)”呢?好象似乎觸及“提高教學(xué)目標(biāo)的高壓線”,有一教師在教學(xué)“普通計(jì)時法與24時計(jì)時法”中始終怕提升轉(zhuǎn)換的方法,歸納“加減法”的轉(zhuǎn)換方法好象又會犯“教師負(fù)著”的錯誤,因而學(xué)生對轉(zhuǎn)換方法的認(rèn)識只能停留在淺層面。有一教師在教學(xué)“異分母分?jǐn)?shù)加減法”時就提出誰能用某一數(shù)學(xué)方法解決這一問題?并同“曹沖稱象”結(jié)合,讓學(xué)生清晰地了解到轉(zhuǎn)化是一種行之有效的解決問題的方法。
小學(xué)數(shù)學(xué)中有很多的數(shù)學(xué)思想方法,在引導(dǎo)學(xué)生經(jīng)歷知識的形成過程中注重?cái)?shù)學(xué)思想方法的滲透和運(yùn)用,這樣無疑有助于學(xué)生數(shù)學(xué)素養(yǎng)的全面提升,無疑有助于學(xué)生學(xué)習(xí)能力的發(fā)展。
(二)關(guān)注知識解構(gòu)與建構(gòu)的有機(jī)統(tǒng)一
小學(xué)數(shù)學(xué)很多課例有幾個概念組成,教學(xué)中教師引領(lǐng)學(xué)生探究式地解剖每一知識點(diǎn),從而達(dá)到對數(shù)學(xué)概念的理解和對數(shù)學(xué)技能的掌握。數(shù)學(xué)概念是相互聯(lián)系的,特別是一節(jié)課的概念都有很大的相關(guān)性和承接性。因此,教學(xué)中我們在注重對一點(diǎn)點(diǎn)數(shù)學(xué)概念的解構(gòu)中更要注重對知識整體的建構(gòu),從而形成知識的內(nèi)在聯(lián)系,促進(jìn)學(xué)生組建知識的認(rèn)知結(jié)構(gòu)。
如有一位教師在教學(xué)“面積與面積單位”中,引領(lǐng)學(xué)生分別對常用的面積單位感性認(rèn)識后,精心設(shè)計(jì)了這樣一個環(huán)節(jié):把三個面積單位“1平方厘米、1平方分米、1平方米”重疊在一起,進(jìn)行知識的溝通,讓學(xué)生觀察比較,閉眼想象等活動,從而使面積單位形成一個結(jié)構(gòu)嚴(yán)密的整體,學(xué)生對面積單位的“大小”和其內(nèi)在聯(lián)系建立了清晰的表象。再如上面舉例的《24小時認(rèn)時法》教學(xué)后,很多教師把1天中的24小時形成過程全面直觀地展示給學(xué)生,學(xué)生對“轉(zhuǎn)換過程”就能自覺感悟和主動建構(gòu)。在教學(xué)“因數(shù)和倍數(shù)”后,教師出示了這樣一道題“6是因數(shù),6是倍數(shù)”,通過辨析,學(xué)生清晰地理解了“因數(shù)和倍數(shù)”的內(nèi)在聯(lián)系,達(dá)到對概念的整體認(rèn)識。
數(shù)學(xué)概念本身的內(nèi)在聯(lián)系是緊密的,是一個結(jié)構(gòu)嚴(yán)密的整體,一節(jié)課中對概念的整合,可以通過對概念的整理加以形成鏈?zhǔn)街R,也可以通過設(shè)計(jì)難度適中的綜合練習(xí)把概念點(diǎn)形成一個網(wǎng)絡(luò)狀的整體。對于一個單元、一個學(xué)段甚至小學(xué)階段的數(shù)學(xué)知識我們可以以最基本的要領(lǐng)為核心,組建學(xué)生的認(rèn)知結(jié)構(gòu),如用“份”的概念把乘除概念,倍的概念,分?jǐn)?shù)概念,比和比例概念及解答有機(jī)地溝通聯(lián)系,以降低學(xué)生對新概念理解的難度并促進(jìn)概念的遷移。
(三)關(guān)注收獲和問題的有機(jī)統(tǒng)一
現(xiàn)在的小學(xué)數(shù)學(xué)課,教師們在新課程的理念指引下,課堂中努力構(gòu)建民主、平等、和諧的新型師生關(guān)系。努力凸顯學(xué)生的主體地位,將反思活動引入課堂教學(xué),在課的結(jié)束前,真少不了這么一個片斷:通過這節(jié)課的學(xué)習(xí),你有什么收獲(或你又學(xué)到了什么新的本領(lǐng))?這對提煉一節(jié)課的概念和方法無疑是有效的做法。本人認(rèn)為要更有效地培養(yǎng)學(xué)生的反思學(xué)習(xí)習(xí)慣,在關(guān)注收獲的同時,更要培養(yǎng)學(xué)生問題意識的理念。我們有些教師一方面擔(dān)心課臨近尾,讓學(xué)生提問題會拖課,影響一節(jié)課的整體性(有些內(nèi)容的課應(yīng)有意識地多留幾分鐘時間讓學(xué)生提問),另一方面學(xué)生的提問會給自己難堪,下不了臺(特別是公開課),弄巧成拙。在觀摩“面積和面積單位”一課時,教師大膽讓學(xué)生提問,一學(xué)生提出“為什么面積單位一定要用平方呢?”在觀摩“減法的運(yùn)算性質(zhì)”一課時,一學(xué)生提出“為什么不能叫減法的結(jié)合律呢”等等,著實(shí)讓教師一時難以回答。因此,課堂中既要有意識地安排學(xué)生提問,又要精心預(yù)設(shè)學(xué)生的問題,如果學(xué)生的提問教師摸不著邊確實(shí)是尷尬的(特別是面對聽課者)。機(jī)靈的教師可能會把“問題”踢給其他學(xué)生,但教師自己心中無底畢竟空虛。當(dāng)前,大力提倡提高教師自身的數(shù)學(xué)素養(yǎng),小學(xué)教師也要研究初高中數(shù)學(xué),甚至是大學(xué)數(shù)學(xué)深遠(yuǎn)意義可見一斑
總之,要想真正讓數(shù)學(xué)概念教學(xué)具有有效性, 教師要充分了解學(xué)生,理解教材精心準(zhǔn)備。學(xué)生要在活動中充分體驗(yàn)與理解;師生平等交融, 互動。讓數(shù)學(xué)課堂真正成為師生展示激情, 智慧和個性的果園。共同摘取“概念教學(xué)有效”的奇皅。
二〇一四年九月
第四篇:小學(xué)數(shù)學(xué)概念教學(xué)有效性的研究論文
小學(xué)數(shù)學(xué)概念教學(xué)有效性的研究
一、研究小學(xué)數(shù)學(xué)概念教學(xué)有效性 1.教學(xué)目標(biāo)的有效性
確立教學(xué)目標(biāo)的有效性是指教學(xué)目標(biāo)確立要遵循有效教學(xué)的價值取向。即:目標(biāo)確立應(yīng)當(dāng)是開放的,不應(yīng)該是封閉的;應(yīng)當(dāng)是全面的,而不是單一的;目標(biāo)的確立應(yīng)尊重學(xué)生的學(xué)習(xí)需要,滿足學(xué)生的學(xué)習(xí)興趣;目標(biāo)的確立要符合發(fā)展學(xué)生人文素養(yǎng)的要求,即在課程教學(xué)目標(biāo)中整合人文精神的滲透;目標(biāo)的確立還要考慮教師自身在課堂教學(xué)中教學(xué)個性發(fā)展方向。
2.教材處理的有效性
教材本身是已經(jīng)篩選和提煉了的學(xué)習(xí)資源,但是,它不是唯一的學(xué)習(xí)資源,就教材本身而言,教材是教學(xué)內(nèi)容的重要載體,但是學(xué)習(xí)并不僅僅局限于學(xué)科知識,還應(yīng)包括引導(dǎo)學(xué)生利用已有的知識和經(jīng)驗(yàn),親身經(jīng)歷經(jīng)實(shí)際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過程,能夠使學(xué)生獲得對數(shù)學(xué)理解的同時,在思維能力、情感態(tài)度與價值觀等多方面得到進(jìn)步和發(fā)展。同時也應(yīng)有利于教師根據(jù)學(xué)生的實(shí)際情況,創(chuàng)造性地開展教學(xué)活動。有利于培養(yǎng)學(xué)生的創(chuàng)新精神和實(shí)踐能力、收集和處理信息的能力、獲取新知識的能力、分析和解決問題的能力以及交流與合作的能力。所以如何有效地利用教材,是有效開展課堂教學(xué)的關(guān)鍵。
3.教、學(xué)方式與方法運(yùn)用的有效性
有效的教、學(xué)方式是課堂教學(xué)效率的提高的有力保障。在轉(zhuǎn)變學(xué)生學(xué)習(xí)方式的同時要轉(zhuǎn)變教師的教學(xué)方式,要有利于學(xué)生的發(fā)展,要以學(xué)法的改革帶動教法的改革,保證課堂教學(xué)的科學(xué)性、靈活性、創(chuàng)造性,為課堂教學(xué)注入新的活力。
二、探究出小學(xué)數(shù)學(xué)概念教學(xué)模式
概念是客觀事物的本質(zhì)屬性在人們頭腦中的反映,對于小學(xué)生來說,概念教學(xué)的過程是認(rèn)識從感性上升到理性的過程。通過一年的摸索實(shí)踐,我將小學(xué)概念教學(xué)模式操作程序分為五個階段:概念的引入——概念的形成——概念的內(nèi)化——概念的鞏固——概念的發(fā)展。具體說來我歸納為下面五句話:
1.創(chuàng)設(shè)情境,引入概念,明確目標(biāo)
蘇霍姆林斯基說:“讓學(xué)生體驗(yàn)到一種自己在親身參與掌握知識的情感,乃是喚起少年特有的對知識的興趣的重要條件?!?人們感知客觀世界,從外界獲取知識信息,80%的信息是通過人的多種感官得到的。錢學(xué)森提出,直觀性教學(xué)是學(xué)生產(chǎn)生形象思維的源泉,而形象思維帶有強(qiáng)烈的情感色彩。,因此引入是否得法,會直接影響學(xué)生的學(xué)習(xí)效果。數(shù)學(xué)概念比較抽象,容易讓學(xué)生覺得枯燥,而小學(xué)生認(rèn)識事物、理解概念主要是憑借事物的具體形象和表象進(jìn)行的,因此創(chuàng)設(shè)有趣的情境,激發(fā)學(xué)生產(chǎn)生探求新知的強(qiáng)列興趣,很有研究的必要。在概念教學(xué)的引入環(huán)節(jié),我總結(jié)出下列幾種主要引入方法:(1)從學(xué)生比較熟悉的實(shí)際事物中引入。提供足夠的直觀感性材料,讓學(xué)生通過看、聽、摸、做等,豐富他們的感性認(rèn)識,使抽象的概念具體化,從而引出概念。(2)從舊概念引入。有些概念之間聯(lián)系十分緊密,在學(xué)生已有的概念基礎(chǔ)上,引入新的概念,便于學(xué)生理解、掌握新知識,復(fù)習(xí)舊知識,同時又強(qiáng)化了新舊知識的內(nèi)在聯(lián)系,使學(xué)生有一個較為完整的概念體系。(3)通過計(jì)算觀察引入。這種引入通常適用于揭示概念的屬性、基本法則中。
2.操作感知,運(yùn)用遷移,掌握概念
感知形象是兒童學(xué)習(xí)數(shù)學(xué)的重要一環(huán),也是為他們打開數(shù)學(xué)大門的閃光的“金鑰匙”。在概念引入的基礎(chǔ)上,教師應(yīng)以足夠的感性材料,組織學(xué)生參與概念的形成過程,在快樂的感悟體驗(yàn)中,主動地探究概念的內(nèi)在本質(zhì)。通過教學(xué)實(shí)踐,我們的實(shí)驗(yàn)老師已能主動地從學(xué)生角度去思索,想到學(xué)生需要什么,腦子里會想些什么,學(xué)好本知識概念的難點(diǎn)在哪里,如何引導(dǎo)學(xué)生通過體驗(yàn)感悟,填充好新舊知識間的空缺,從而主動參與新概念的構(gòu)建過程。
3.比較綜合,邏輯抽象,促進(jìn)內(nèi)化
學(xué)習(xí)數(shù)學(xué)唯一正確的方法是實(shí)行再創(chuàng)造。學(xué)習(xí)不應(yīng)看成學(xué)生對于教師所授予的知識的被動接受,而是以一個學(xué)生已有的知識和經(jīng)驗(yàn)為基礎(chǔ)的新發(fā)現(xiàn)與新理解過程,教師的任務(wù)就應(yīng)當(dāng)是引導(dǎo)和幫助學(xué)生進(jìn)行再創(chuàng)造工作而不是把現(xiàn)成的知識灌輸給學(xué)生。
實(shí)踐中,我主要采取了:創(chuàng)設(shè)認(rèn)知情境、設(shè)置矛盾沖突、抓關(guān)鍵詞、運(yùn)用變式、比較異同等合理運(yùn)用比較、引導(dǎo)抽象概括等方法引導(dǎo)學(xué)生達(dá)到概念內(nèi)化效果。課題實(shí)踐讓我們明白,科學(xué)的運(yùn)用方法,可以有效促進(jìn)學(xué)生概念內(nèi)化,真正產(chǎn)生學(xué)生自己的數(shù)學(xué)理解。
不同概念之間的聯(lián)系通過聯(lián)系以學(xué)習(xí)新概念。數(shù)學(xué)中的任何一個概念,只有與其他概念相聯(lián)系,才能生成和發(fā)展。重視概念之間的聯(lián)系,是概念理解的重要方面。利用已有的概念來定義新概念,同化新概念是 數(shù)學(xué)中常見的,在此不再舉例闡述。
通過聯(lián)系以學(xué)習(xí)思想方法。概念和概念之間的關(guān)系有強(qiáng)抽象、弱抽象、廣義抽象的關(guān)系,因而概念之間的聯(lián)系包含著數(shù)學(xué) 方法。它能使人高屋建瓴地理解數(shù)學(xué)。如平行四邊形通過“ 割補(bǔ)” 的方法化歸為矩形;三角形、長方形、正方形、平行四邊形的面積 公式都可統(tǒng)一到梯形的面積公式;看上去不相干的“ 整數(shù)加法”、“ 分?jǐn)?shù)加法”“、小數(shù)加法”都可統(tǒng)一到“ 單位相同的數(shù)相加”,等。在教學(xué)中,教師引導(dǎo)學(xué)生在不同概念之間建立聯(lián)系的時候,就必然會滲透數(shù)學(xué)思想方法的學(xué)習(xí)。
通過聯(lián)系以形成概念系統(tǒng)。引導(dǎo)學(xué)生弄清概念之間的縱向聯(lián)系,形成概念小系統(tǒng)。如整除、倍數(shù)、公倍數(shù)、最小公倍數(shù);整數(shù)、約數(shù)、公約數(shù)、最大公約數(shù)等都是縱向發(fā)展形成的概念系統(tǒng)。也可橫向組織成小系統(tǒng)。如最小公倍數(shù)、最大公約數(shù)、分解質(zhì)因 數(shù)、質(zhì)因數(shù)、短除法等就是橫向聯(lián)系在一起的系統(tǒng)。再如“ 除法”“ 分?jǐn)?shù)”“ 比”看上去是三個“ 距離”較遠(yuǎn)的概念,通過它們橫向聯(lián)系類比,能加深理解。4.多層訓(xùn)練,解決問題,鞏固概念
學(xué)習(xí)概念的最終目的是為了運(yùn)用概念來解決實(shí)際問題。只有把學(xué)到的知識運(yùn)用到實(shí)踐中,學(xué)習(xí)才是有意義的。概念教學(xué)安排的練習(xí)類型是多層次、多角度的,既要注意概念的關(guān)鍵性,又要注意概念的綜合性。研究中,我把關(guān)注的目光經(jīng)常性地投向?qū)W生的作業(yè)練習(xí)中,為起到鞏固、深化概念的作用,我要求概念的練習(xí)課要有目的性、針對性、層次性、趣味性。形成基本練習(xí)→變式練習(xí)→綜合練習(xí)的結(jié)構(gòu)。重視相近相似、易錯易混的對比練習(xí),相關(guān)概念結(jié)合練,易混概念對比練,新概念要及時練,重點(diǎn)概念反復(fù)練。在概念教學(xué)中基本注重了六種練習(xí)方法:操作演示、反饋舉例、推理判斷、嘗試錯誤、變換敘述、整理歸納。既注意概念的鞏固,又重視了思維能力的培養(yǎng)。
5.檢測反饋,構(gòu)建網(wǎng)絡(luò),發(fā)展概念
小學(xué)數(shù)學(xué)概念間是互為聯(lián)系的,絕不應(yīng)孤立存在的。研究概念教學(xué)必須遵循數(shù)學(xué)教學(xué)的基本規(guī)律,將“知識間的內(nèi)在聯(lián)系”觀念貫穿于全過程,突出知識與生活經(jīng)驗(yàn)間的緊密聯(lián)系、同一概念不同表示方式之間的聯(lián)系、不同概念之間的聯(lián)系,將新知嫁接在原來的知識樹上,從而使之成為學(xué)生個人內(nèi)部知識網(wǎng)絡(luò)的一部分,使學(xué)生掌握數(shù)學(xué)概念呈現(xiàn)出一種發(fā)展的動態(tài)。
我歸納的以上五個步驟不是僵化一成不變的,在不同的概念教學(xué)中更需要靈活處理,比如正確處理“淡化”與“強(qiáng)化”間的關(guān)系,如在教學(xué)《百分?jǐn)?shù)》等數(shù)的概念時,我們淡化了操作,但強(qiáng)化了舉例;教學(xué)《長方形的面積》等圖形概念時,我們淡化了情境,卻強(qiáng)化了學(xué)生的動手操作;教學(xué)《克、千克》《時分秒》《年月日》這些概念,我更強(qiáng)化概念與生活間的聯(lián)系。在具體地教學(xué)過程中,我還可以調(diào)整以上五個環(huán)節(jié)的順序進(jìn)行靈活變化。
三、改進(jìn)當(dāng)前自身概念教學(xué)現(xiàn)狀,構(gòu)建小學(xué)數(shù)學(xué)概念教學(xué)模式,提升自身的教學(xué)能力及教育科研能力
(一)關(guān)注教學(xué)過程和思想方法的有機(jī)統(tǒng)一 教學(xué)過程體現(xiàn)概念的形成過程,并讓學(xué)生經(jīng)歷這一過程的教學(xué)理念已成為廣大教師的共識并有意識地落實(shí)在教學(xué)實(shí)踐中,通過讓學(xué)生動手實(shí)踐、活動討論、合作交流等多中學(xué)習(xí)方式,經(jīng)歷體驗(yàn)數(shù)學(xué)學(xué)習(xí)過程。
我們都知道數(shù)學(xué)概念與數(shù)學(xué)思想方法是新教材體系的兩條主線。數(shù)學(xué)概念是明線,寫在教材里;數(shù)學(xué)思想方法是暗線,體現(xiàn)在知識的形成過程中。對于數(shù)學(xué)概念教師們大多能夠根據(jù)教學(xué)目標(biāo)扎實(shí)施教,而對數(shù)學(xué)思想方法的滲透往往視而不見或者認(rèn)為點(diǎn)破了似乎拔高了教學(xué)目標(biāo)而顯得遮遮羞羞。我們認(rèn)為,在數(shù)學(xué)概念的形成過程中滲透數(shù)學(xué)思想方法而加以深化其實(shí)對于學(xué)生學(xué)習(xí)能力的提高具有潛移默化的促進(jìn)作用。如有一教師在教學(xué)“高不變的性質(zhì)”時,先是通過情景呈現(xiàn)板例“24÷6=4”,讓學(xué)生寫出商是4的算式,觀察“被除數(shù)、除數(shù)和商的變化”讓學(xué)生大膽提出、猜測。通過活動研究,進(jìn)一步驗(yàn)證猜測,完善規(guī)律,最后適當(dāng)應(yīng)用規(guī)律。教師引導(dǎo)反思學(xué)習(xí)過程中就大膽地提出這節(jié)課的學(xué)習(xí)過程和方法,即:提出猜測、驗(yàn)證猜測、完善規(guī)律、應(yīng)用規(guī)律。學(xué)生不僅對“商不變的性質(zhì)“的內(nèi)涵有了全面深刻的理解,更可貴的是對數(shù)學(xué)的思想方法的認(rèn)識得到提升,學(xué)習(xí)能力得到不斷發(fā)展。
教學(xué)實(shí)踐中,我們的教師往往對數(shù)學(xué)思想方法避而讓之,甚至還被扣上超越目標(biāo)的高帽子。在一次教研活動,執(zhí)教教師在教學(xué)“
6、7的認(rèn)識”后安排“連線練習(xí)”,教師表達(dá)了“一一對應(yīng)”呢?好象似乎觸及“提高教學(xué)目標(biāo)的高壓線”,有一教師在教學(xué)“普通計(jì)時法與24時計(jì)時法”中始終怕提升轉(zhuǎn)換的方法,歸納“加減法”的轉(zhuǎn)換方法好象又會犯“教師負(fù)著”的錯誤,因而學(xué)生對轉(zhuǎn)換方法的認(rèn)識只能停留在淺層面。有一教師在教學(xué)“異分母分?jǐn)?shù)加減法”時就提出誰能用某一數(shù)學(xué)方法解決這一問題?并同“曹沖稱象”結(jié)合,讓學(xué)生清晰地了解到轉(zhuǎn)化是一種行之有效的解決問題的方法。
小學(xué)數(shù)學(xué)中有很多的數(shù)學(xué)思想方法,在引導(dǎo)學(xué)生經(jīng)歷知識的形成過程中注重?cái)?shù)學(xué)思想方法的滲透和運(yùn)用,這樣無疑有助于學(xué)生數(shù)學(xué)素養(yǎng)的全面提升,無疑有助于學(xué)生學(xué)習(xí)能力的發(fā)展。
(二)關(guān)注知識解構(gòu)與建構(gòu)的有機(jī)統(tǒng)一
小學(xué)數(shù)學(xué)很多課例有幾個概念組成,教學(xué)中教師引領(lǐng)學(xué)生探究式地解剖每一知識點(diǎn),從而達(dá)到對數(shù)學(xué)概念的理解和對數(shù)學(xué)技能的掌握。數(shù)學(xué)概念是相互聯(lián)系的,特別是一節(jié)課的概念都有很大的相關(guān)性和承接性。因此,教學(xué)中我們在注重對一點(diǎn)點(diǎn)數(shù)學(xué)概念的解構(gòu)中更要注重對知識整體的建構(gòu),從而形成知識的內(nèi)在聯(lián)系,促進(jìn)學(xué)生組建知識的認(rèn)知結(jié)構(gòu)。
如有一位教師在教學(xué)“面積與面積單位”中,引領(lǐng)學(xué)生分別對常用的面積單位感性認(rèn)識后,精心設(shè)計(jì)了這樣一個環(huán)節(jié):把三個面積單位“1平方厘米、1平方分米、1平方米”重疊在一起,進(jìn)行知識的溝通,讓學(xué)生觀察比較,閉眼想象等活動,從而使面積單位形成一個結(jié)構(gòu)嚴(yán)密的整體,學(xué)生對面積單位的“大小”和其內(nèi)在聯(lián)系建立了清晰的表象。再如上面舉例的《24小時認(rèn)時法》教學(xué)后,很多教師把1天中的24小時形成過程全面直觀地展示給學(xué)生,學(xué)生對“轉(zhuǎn)換過程”就能自覺感悟和主動建構(gòu)。在教學(xué)“因數(shù)和倍數(shù)”后,教師出示了這樣一道題“6是因數(shù),6是倍數(shù)”,通過辨析,學(xué)生清晰地理解了“因數(shù)和倍數(shù)”的內(nèi)在聯(lián)系,達(dá)到對概念的整體認(rèn)識。
數(shù)學(xué)概念本身的內(nèi)在聯(lián)系是緊密的,是一個結(jié)構(gòu)嚴(yán)密的整體,一節(jié)課中對概念的整合,可以通過對概念的整理加以形成鏈?zhǔn)街R,也可以通過設(shè)計(jì)難度適中的綜合練習(xí)把概念點(diǎn)形成一個網(wǎng)絡(luò)狀的整體。對于一個單元、一個學(xué)段甚至小學(xué)階段的數(shù)學(xué)知識我們可以以最基本的要領(lǐng)為核心,組建學(xué)生的認(rèn)知結(jié)構(gòu),如用“份”的概念把乘除概念,倍的概念,分?jǐn)?shù)概念,比和比例概念及解答有機(jī)地溝通聯(lián)系,以降低學(xué)生對新概念理解的難度并促進(jìn)概念的遷移。
(三)關(guān)注收獲和問題的有機(jī)統(tǒng)一
現(xiàn)在的小學(xué)數(shù)學(xué)課,教師們在新課程的理念指引下,課堂中努力構(gòu)建民主、平等、和諧的新型師生關(guān)系。努力凸顯學(xué)生的主體地位,將反思活動引入課堂教學(xué),在課的結(jié)束前,真少不了這么一個片斷:通過這節(jié)課的學(xué)習(xí),你有什么收獲(或你又學(xué)到了什么新的本領(lǐng))?這對提煉一節(jié)課的概念和方法無疑是有效的做法。本人認(rèn)為要更有效地培養(yǎng)學(xué)生的反思學(xué)習(xí)習(xí)慣,在關(guān)注收獲的同時,更要培養(yǎng)學(xué)生問題意識的理念。我們有些教師一方面擔(dān)心課臨近尾,讓學(xué)生提問題會拖課,影響一節(jié)課的整體性(有些內(nèi)容的課應(yīng)有意識地多留幾分鐘時間讓學(xué)生提問),另一方面學(xué)生的提問會給自己難堪,下不了臺(特別是公開課),弄巧成拙。在觀摩“面積和面積單位”一課時,教師大膽讓學(xué)生提問,一學(xué)生提出“為什么面積單位一定要用平方呢?”在觀摩“減法的運(yùn)算性質(zhì)”一課時,一學(xué)生提出“為什么不能叫減法的結(jié)合律呢”等等,著實(shí)讓教師一時難以回答。因此,課堂中既要有意識地安排學(xué)生提問,又要精心預(yù)設(shè)學(xué)生的問題,如果學(xué)生的提問教師摸不著邊確實(shí)是尷尬的(特別是面對聽課者)。機(jī)靈的教師可能會把“問題”踢給其他學(xué)生,但教師自己心中無底畢竟空虛。當(dāng)前,大力提倡提高教師自身的數(shù)學(xué)素養(yǎng),小學(xué)教師也要研究初高中數(shù)學(xué),甚至是大學(xué)數(shù)學(xué)深遠(yuǎn)意義可見一斑
總之,要想真正讓數(shù)學(xué)概念教學(xué)具有有效性, 教師要充分了解學(xué)生,理解教材精心準(zhǔn)備。學(xué)生要在活動中充分體驗(yàn)與理解;師生平等交融, 互動。讓數(shù)學(xué)課堂真正成為師生展示激情, 智慧和個性的果園。共同摘取“概念教學(xué)有效”的奇皅。
第五篇:初中數(shù)學(xué)概念教學(xué)論文:試論初中數(shù)學(xué)概念教學(xué)
初中數(shù)學(xué)概念教學(xué)論文:試論初中數(shù)學(xué)概念教學(xué) 概念是客觀事物本質(zhì)屬性在人們頭腦中的反映。數(shù)學(xué)概念反映現(xiàn)實(shí)世界的空間形式和數(shù)量關(guān)系的本質(zhì)屬性的思維形式。在中學(xué)數(shù)學(xué)教學(xué)中,正確理解數(shù)學(xué)概念是掌握數(shù)學(xué)基礎(chǔ)知識的前提,是學(xué)好定理、公式、法則和數(shù)學(xué)思想的基礎(chǔ),搞清概念是提高解題能力的關(guān)鍵。只要對概念理解的深透,才能在解題中做出正確的判斷。因此,在數(shù)學(xué)教學(xué)過程中,數(shù)學(xué)概念的教學(xué)顯得尤為重要。學(xué)生數(shù)學(xué)能力的發(fā)展取決于他對數(shù)學(xué)概念的牢固掌握與深刻理解與否。而在現(xiàn)實(shí)中,許多學(xué)生對數(shù)學(xué)的學(xué)習(xí),只注重盲目的做習(xí)題,不注重對數(shù)學(xué)概念的掌握,對基本概念含糊不清。做習(xí)題不懂得從基本概念入手,思考解題依據(jù),探索解題方法,而是跟著感覺走。這樣的學(xué)習(xí),必然越學(xué)越糊涂,因而數(shù)學(xué)概念的教學(xué)在整個數(shù)學(xué)教學(xué)中有其不容忽視的地位與作用。下面僅結(jié)合本人平時的教學(xué)實(shí)踐,談一點(diǎn)膚淺的認(rèn)識與體會。
一、概念的引入:
1.從學(xué)生已有的生活經(jīng)驗(yàn)、熟知的具體事例中進(jìn)行引入。如“圓”的概念的引出前,可讓同學(xué)們聯(lián)想生活中見過的年輪、太陽、五環(huán)旗、圓狀跑道等實(shí)物的形狀,再讓同學(xué)用圓規(guī)在紙上畫圓,也可用準(zhǔn)備好的定長的線繩,將一端固定,而另一端帶有鉛筆并繞固定端旋轉(zhuǎn)一周,從而引導(dǎo)同學(xué)們自己發(fā)現(xiàn)圓的形成過程,進(jìn)而總結(jié)出圓的特點(diǎn):圓周上任
意一點(diǎn)到圓心的距離相等,從而猜想歸納出“圓”的概念。
2.在復(fù)習(xí)舊概念的基礎(chǔ)上引入新概念。
概念復(fù)習(xí)的起步是在已有的認(rèn)知結(jié)構(gòu)的基礎(chǔ)上進(jìn)行的。因此,在教學(xué)新概念前,如果能對學(xué)生認(rèn)知結(jié)構(gòu)中原有的適當(dāng)概念作一些類比引入新概念,則有利于促進(jìn)新概念的形成。例如:在教學(xué)一元二次方程時,就可以先復(fù)習(xí)一元一次方程,因?yàn)橐辉淮畏匠淌腔A(chǔ),一元二次方程是延伸,復(fù)習(xí)一元一次方程是合乎知識邏輯的。通過比較得出兩種方程都是只含有一個未知數(shù)的整式方程,差異僅在于未知數(shù)的最高次數(shù)不同。由此,很容易建立起“一元二次方程”的概念。
二、分析概念含義,抓住概念本質(zhì)。1.揭示含義,突出關(guān)鍵詞。
數(shù)學(xué)概念嚴(yán)謹(jǐn)、準(zhǔn)確、簡練。教師的語言對于學(xué)生感知教材,形成概念有重要的意義,因此要特別注意用詞的嚴(yán)格性和準(zhǔn)確性。教師要用生動、形象的語言講清概念的每一個字、句、符號的意義,特別是關(guān)鍵的字、詞、句,這是指導(dǎo)學(xué)生掌握概念,并認(rèn)識概念的前提。
如:“分解因式”概念:“把一個多項(xiàng)式化成幾個整式的積的形式,這種變形叫把這個多項(xiàng)式分解因式。”在教學(xué)中學(xué)生往往只注重“積”這個關(guān)鍵詞,而忽略了“整式”,易造成對分解因式的錯誤認(rèn)識。所以在教學(xué)中務(wù)必強(qiáng)調(diào),并與學(xué)生分析這兩處關(guān)鍵詞的含義,加深對概念的理解。
2.分析概念,抓住本質(zhì)。
數(shù)學(xué)概念大多數(shù)是通過描述定義給出他的確切含義,他屬于理性認(rèn)識,但來源于感性認(rèn)識,所以對于這類概念一定要抓住它的本質(zhì)屬性。
如:“互為補(bǔ)角”的概念:“如果兩個角的和是平角,則這兩個角互為補(bǔ)角?!逼浔举|(zhì)屬性:(1)必須具備兩個角之和為180°,一個角為180°或三個角為180°都不是互為補(bǔ)角,互補(bǔ)角只就兩個角而言。(2)互補(bǔ)的兩個角只是數(shù)量上的關(guān)系,這與兩個角的位置無關(guān)。通過這兩個本質(zhì)屬性的分析,學(xué)生對“互為補(bǔ)角”有了全面的理解。
3.剖析變化,深化概念。
數(shù)學(xué)概念都是從正面闡述,一些學(xué)生只從文字上理解,以為掌握了概念的本質(zhì),而碰到具體的數(shù)學(xué)問題卻又難以做出正確的判斷。因此,在教學(xué)過程中,必須在學(xué)生正面認(rèn)識概念的基礎(chǔ)上,通過反例或變式從反面去剖析數(shù)學(xué)概念,凸顯對象中隱蔽的本質(zhì)要素,加深學(xué)生對概念理解的全面性。
如:在學(xué)習(xí)對頂角的概念后,讓學(xué)生做題:(1)下列表示的兩個角,哪組是對頂角?(a)兩條直線相交,相對的兩個角(b)頂點(diǎn)相同的兩個角(c)同一個角的兩個鄰補(bǔ)角 前后聯(lián)系,多方印證,加深認(rèn)識。
部分學(xué)生對概念的全面理解不可能一蹴而就,而是要經(jīng)歷:實(shí)踐——認(rèn)識——再實(shí)踐——再認(rèn)識的過程,這是個“正確”與“錯誤”搖擺不定的過程,更是一個對概念的理解不斷深化的過程。事實(shí)上,學(xué)生在初步學(xué)習(xí)某一數(shù)學(xué)概念之后,對概念的理解并不怎么深刻,而是通過對后續(xù)知識的學(xué)習(xí)讓學(xué)生回過頭來再對概念進(jìn)行加深理解,遵循“循環(huán)反復(fù),螺旋上升”的學(xué)習(xí)原則。
如:學(xué)生剛接觸“二次函數(shù)”的概念時,僅能從形式上判斷某一函數(shù)是否為二次函數(shù)。但當(dāng)他們學(xué)習(xí)了其圖象,研究了圖象的性質(zhì)后就能根據(jù)a得出圖象的開口方向,由a、b確定圖象的對稱軸,由a、b、c給出圖象的頂點(diǎn)坐標(biāo)。這時對二次函數(shù)的概念自是記憶深刻,能脫口而出了。
三、概念的記憶。1.并列概念,舉一反三。、如:一元一次方程的概念:“只含有一個未知數(shù),并且未知數(shù)的指數(shù)為一(次),這樣的方程叫做一元一次方程”,清楚了“元”與“次”的含義,則一元一次方程、二元一次方程、一元一次不等式等概念就水到渠成了。通過縱橫對比,在類比中找特點(diǎn),在聯(lián)想中求共性,把數(shù)學(xué)知識系統(tǒng)化,學(xué)生輕輕松松記概念。
2.易混淆概念,聯(lián)系區(qū)別。
任何一個概念都有它的內(nèi)涵和外延,外延的大小與內(nèi)涵
成反比關(guān)系。內(nèi)涵越多,外延就越??;內(nèi)涵越少,外延就越大。把握概念的內(nèi)涵與外延,能大大增加學(xué)生對概念的明晰度,提高鑒別能力,避免張冠李戴,為此,把所教概念同類似的相關(guān)的概念相比較,分清它們的異同點(diǎn)及聯(lián)系,也就顯得十分重要。如:學(xué)完“軸對稱”與“軸對稱圖形”的概念后,可引導(dǎo)學(xué)生找出兩者之間的聯(lián)系和區(qū)別。聯(lián)系:兩者都有對稱軸,如把成軸對稱的兩個圖形看成一個整體,那么這個整體就是一個軸對稱圖形,如把一個軸對稱圖形位于對稱軸兩旁的部分看成兩個圖形,那么這兩部分成軸對稱。區(qū)別:“軸對稱”是指兩個圖形成軸對稱,主要指這兩個圖形特殊的位置關(guān)系;而“軸對稱圖形”僅僅是指一個圖形,主要指這個圖形所具備的特殊形狀。通過這樣的聯(lián)系與區(qū)別,學(xué)生加深了對概念的理解,避免混淆,從而提高學(xué)生認(rèn)知概念的清晰度。
3.從屬概念,圖表體現(xiàn)。
有從屬關(guān)系的概念其外延之間有著互相包含的關(guān)系,在復(fù)習(xí)階段若以圖表的形式表現(xiàn),能使概念系統(tǒng)化、條理化,有利于學(xué)生的記憶和理解。
四、概念的鞏固。
1.利用新概念復(fù)習(xí)就概念。如:在四邊形這一章中:平行四邊形具有四邊形所有性質(zhì),矩形具有平行四邊形所有性質(zhì),菱形、正方形具有平行四邊形的所有性質(zhì),正方形具有
矩形、菱形的所有性質(zhì)。這樣鏈鎖式概念教學(xué),既掌握了新概念又加深了對就概念的理解。
2.加強(qiáng)預(yù)習(xí)。在課堂教學(xué)中優(yōu)先考慮概念題的安排,精講精練,講練結(jié)合,合理安排,選題時注意題目的典型性、多樣性、綜合性和針對性,做到相關(guān)概念結(jié)合練,易混淆概念對比練,主要概念反復(fù)練。
3.對學(xué)生在練習(xí)中,課外作業(yè)中出現(xiàn)的錯誤,要抓緊不放,及時糾正。概念教學(xué)的重點(diǎn)不是記熟概念,而是理解和應(yīng)用概念解決實(shí)際問題。因此,教師要引導(dǎo)每一位學(xué)生清楚的認(rèn)識到所犯錯誤是哪一個概念用錯了,或者是將哪一個概念的關(guān)鍵詞忽略了,今后遇到類似的問題怎么辦。即使是其它方面的錯誤也要找出是否概念不清而致錯,予以分析糾正。
4.每一單元結(jié)束后,要進(jìn)行概念總結(jié)??偨Y(jié)后,要特別注意把同類概念區(qū)別分析清楚,把不同類概念的聯(lián)系分析透徹。概念的形成是一個由特殊到一般的過程,而概念的運(yùn)用則是一個由一般到特殊的過程,它們是學(xué)生掌握概念的兩個階段。
5.運(yùn)用概念去分析問題和解決問題,是教學(xué)過程中的高級階段,在應(yīng)用中求得對概念更深層次的理解,以達(dá)到鞏固的目的,同時也使學(xué)生認(rèn)識到數(shù)學(xué)概念既是進(jìn)一步學(xué)習(xí)數(shù)學(xué)理論的基礎(chǔ),又是進(jìn)行再認(rèn)識的工具。當(dāng)然應(yīng)用概念應(yīng)由易
到難,循序漸進(jìn),有一定的梯度,以符合學(xué)生的認(rèn)知規(guī)律,便于將所掌握的知識轉(zhuǎn)化為能力。
總之,在數(shù)學(xué)概念教學(xué)過程中,教師要從教材和學(xué)生的實(shí)際出發(fā),面向全體學(xué)生,耐心地幫助學(xué)生掌握邏輯思維的“語言”,逐步提高他們的思維水平,定能夠增強(qiáng)數(shù)學(xué)概念教學(xué)的有效性,從而提高數(shù)學(xué)教學(xué)質(zhì)量。