欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      九年級(jí)數(shù)學(xué)上冊(cè)21.3.2實(shí)際問題與一元二次方程_增長(zhǎng)率問題教案新人教版(5篇范文)

      時(shí)間:2019-05-15 02:50:03下載本文作者:會(huì)員上傳
      簡(jiǎn)介:寫寫幫文庫(kù)小編為你整理了多篇相關(guān)的《九年級(jí)數(shù)學(xué)上冊(cè)21.3.2實(shí)際問題與一元二次方程_增長(zhǎng)率問題教案新人教版》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫(kù)還可以找到更多《九年級(jí)數(shù)學(xué)上冊(cè)21.3.2實(shí)際問題與一元二次方程_增長(zhǎng)率問題教案新人教版》。

      第一篇:九年級(jí)數(shù)學(xué)上冊(cè)21.3.2實(shí)際問題與一元二次方程_增長(zhǎng)率問題教案新人教版

      21.3.2實(shí)際問題與一元二次方程—增長(zhǎng)率問題

      一、教學(xué)目標(biāo)

      1.掌握建立數(shù)學(xué)模型以解決增長(zhǎng)率與降低率問題 2.正確分析問題中的數(shù)量關(guān)系并建立一元二次方程模型.二、課時(shí)安排 1課時(shí)

      三、教學(xué)重點(diǎn)

      建立數(shù)學(xué)模型以解決增長(zhǎng)率與降低率問題

      四、教學(xué)難點(diǎn)

      正確分析問題中的數(shù)量關(guān)系并建立一元二次方程模型.五、教學(xué)過(guò)程

      (一)導(dǎo)入新課

      小明學(xué)習(xí)非常認(rèn)真,學(xué)習(xí)成績(jī)直線上升,第一次月考數(shù)學(xué)成績(jī)是80分,第二次月考增長(zhǎng)了10%,第三次月考又增長(zhǎng)了10%,問他第三次數(shù)學(xué)成績(jī)是多少?

      教師引導(dǎo)學(xué)生積極討論,引入新課。

      (二)講授新課

      兩年前生產(chǎn)1噸甲種藥品的成本是5000元,生產(chǎn)1噸乙種藥品的成本是6000元,隨著生產(chǎn)技術(shù)的進(jìn)步,現(xiàn)在生產(chǎn)1噸甲種藥品的成本是3000元,生產(chǎn)1噸乙種藥品的成本是3600元,哪種藥品成本的年平均下降率較大?

      思考:(1)怎樣理解下降額和下降率的關(guān)系?

      (2)若設(shè)甲種藥品平均下降率為x,則一年后,甲種藥品的成本下降了 元,此時(shí)成本為 元;兩年后,甲種藥品下降了 元,此時(shí)成本為 元。

      (3)對(duì)甲種藥品而言根據(jù)等量關(guān)系列方程并求解、選擇根? 解:設(shè)甲種藥品成本的年平均下降率為x,則一年后甲種藥品成本為5000(1-x)元,兩年后甲種藥品成本為5000(1-x)元.

      依題意,得5000(1-x)=3000 解得:x1≈0.225,x2≈1.775(不合題意,舍去)

      (4)同樣的方法請(qǐng)同學(xué)們嘗試計(jì)算乙種藥品的平均下降率,并比較哪種藥品成本的平均下降率較大。

      2設(shè)乙種藥品成本的平均下降率為y. 則:6000(1-y)=3600 整理,得:(1-y)=0.6 解得:y≈0.225 答:兩種藥品成本的年平均下降率一樣大(5)思考經(jīng)過(guò)計(jì)算,你能得出什么結(jié)論?

      小結(jié):經(jīng)過(guò)計(jì)算,成本下降額較大的藥品,它的成本下降率不一定較大,應(yīng)比較降前及降后的價(jià)格.

      小結(jié):類似地,這種增長(zhǎng)率的問題有一定的模式.若平均增長(zhǎng)(或降低)百分率為x,增長(zhǎng)(或降低)前的是a,增長(zhǎng)(或降低)n次后的量是b,則它們的數(shù)量關(guān)系可表示為a(1±x)=b(增長(zhǎng)?。档腿。?/p>

      (三)重難點(diǎn)精講

      例2 某公司2014年的各項(xiàng)經(jīng)營(yíng)中,一月份的營(yíng)業(yè)額為200萬(wàn)元,一月、二月、三月的營(yíng)業(yè)額共950萬(wàn)元,如果平均每月營(yíng)業(yè)額的增長(zhǎng)率相同,求這個(gè)增長(zhǎng)率.

      解:設(shè)這個(gè)增長(zhǎng)率為x.根據(jù)題意,得 200+200(1+x)+200(1+x)=950 整理方程,得 4x+12x-7=0,解這個(gè)方程得 x1=-3.5(舍去),x2=0.5.答:這個(gè)增長(zhǎng)率為50%.注意:增長(zhǎng)率不可為負(fù),但可以超過(guò)1.(四)歸納小結(jié)

      小結(jié):1.列一元二次方程解應(yīng)用題的步驟:審、設(shè)、找、列、解、答。最后要檢驗(yàn)根是否符合實(shí)際意義。

      2.用“傳播問題”建立數(shù)學(xué)模型,并利用它解決一些具體問題.

      3.對(duì)于變化率問題,若平均增長(zhǎng)(降低)率為x,增長(zhǎng)(或降低)前的基數(shù)是a,增長(zhǎng)(或降低)n次后的量是b,則有:a(1?x)n?b(常見n=2)

      (五)隨堂檢測(cè)

      22n22

      1.某廠今年一月份的總產(chǎn)量為500噸,三月份的總產(chǎn)量為720噸,平均每月增長(zhǎng)率是x,列方程()A.500(1+2x)=720 B.500(1+x)=720 C.500(1+x)=720 D.720(1+x)=500 2.某校去年對(duì)實(shí)驗(yàn)器材的投資為2萬(wàn)元,預(yù)計(jì)今明兩年的投資總額為8萬(wàn)元,若設(shè)該校今明兩年在實(shí)驗(yàn)器材投資上的平均增長(zhǎng)率是為.3.青山村種的水稻2013年平均每公頃產(chǎn)7200千克,2014年平均每公頃產(chǎn)8712千克,求水稻每公頃產(chǎn)量的年平均增長(zhǎng)率.4.菜農(nóng)李偉種植的某蔬菜,計(jì)劃以每千克5元的價(jià)格對(duì)外批發(fā)銷售.由于部分菜農(nóng)盲目擴(kuò)大種植,造成該蔬菜滯銷,李偉為了加快銷售,減少損失,對(duì)價(jià)格經(jīng)過(guò)兩次下調(diào)后,以每千克3.2元的價(jià)格對(duì)外批發(fā)銷售.(1)求平均每次下調(diào)的百分率;

      (2)小華準(zhǔn)備到李偉處購(gòu)買5噸該蔬菜,因數(shù)量多,李偉決定再給予兩種優(yōu)惠方案以供選擇:方案一,打九折銷售;方案二,不打折,每噸優(yōu)惠現(xiàn)金200元.試問小華選擇哪種方案更優(yōu)惠?請(qǐng)說(shuō)明理由.答案:1.B 2.2(1+x)+2(1+x)=8 3.解:設(shè)水稻每公頃產(chǎn)量的平均增長(zhǎng)率為x, 根據(jù)題意,得 7200(1+x)=8712 系數(shù)化為1得,(1+x)=1.21 直接開平方得,1+x=1.1, 1+x=-1.1 則x1=0.1, x2=-1.1, 答:水稻每公頃產(chǎn)量的年平均增長(zhǎng)率為10%.4.解:(1)設(shè)平均每次下調(diào)的百分率為x,由題意,得 5(1-x)=3.2,解得 x1=20%,x2=1.8(舍去)

      ∴平均每次下調(diào)的百分率為20%;5.(2)小華選擇方案一購(gòu)買更優(yōu)惠,理由如下: 方案一所需費(fèi)用為:3.2×0.9×5000=14400(元); 2

      222

      x,則可列方程

      方案二所需費(fèi)用為:3.2×5000-200×5=15000(元),∵14400<15000,∴小華選擇方案一購(gòu)買更優(yōu)惠.六.板書設(shè)計(jì) 增長(zhǎng)率問題 探究2:

      a(1±x)n=b(增長(zhǎng)?。档腿。?/p>

      例題2:

      增長(zhǎng)率不可為負(fù),但可以超過(guò)1.七、作業(yè)布置

      習(xí)題21.3 P22 7.練習(xí)冊(cè)相關(guān)練習(xí)

      八、教學(xué)反思

      第二篇:實(shí)際問題與一元二次方程教案

      教學(xué)過(guò)程

      〖活動(dòng)1〗 問題 通過(guò)上節(jié)課的學(xué)習(xí),大家學(xué)到了哪些知識(shí)和方法? 教師提出問題,學(xué)生回憶,選一位同學(xué)作答,其他同學(xué)補(bǔ)充.在本次活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注:(1)學(xué)生對(duì)列方程解應(yīng)用問題的步驟 是否清楚;(2)學(xué)生能否說(shuō)出每一步驟的關(guān)鍵和應(yīng)注意問題.(活動(dòng)1為學(xué)生創(chuàng)設(shè)了一個(gè)回憶、思考的情景,又是本課一種很自然的引入,為本課的探究活動(dòng)做好鋪墊).〖活動(dòng)2〗 問題 要設(shè)計(jì)一本書的封面,封面長(zhǎng)27cm ,寬21cm,正中央是一個(gè)與整個(gè)封面長(zhǎng)寬比例相同的矩形,如果要使四周的彩色邊襯所占面積是封面面積的四分之一,上下邊襯等寬,左右邊襯等寬,應(yīng)如何設(shè)計(jì)四周邊襯的寬度(精確到0.1cm).(1)本題中有哪些數(shù)量關(guān)系?

      (2)正中央是一個(gè)與整個(gè)封面長(zhǎng)寬比例相同的矩形如何理解?(3)如何利用已知的數(shù)量關(guān)系選取未知數(shù)?(4)列方程并得出結(jié)論.(5)反思解決問題的關(guān)鍵是什么?

      教師展示課件,教師提出問題(1)學(xué)生分析,請(qǐng)一位同學(xué)回答,教師在題目中指出數(shù)量關(guān)系.教師提出問題(2)學(xué)生思考,請(qǐng)一位同學(xué)回答,可舉簡(jiǎn)單例子說(shuō)明,最后引導(dǎo)學(xué)生得出正中央矩形的長(zhǎng)寬比是9︰7.問題(1)(2)都是幫助學(xué)生更好的理解題意,為后面的解題做以鋪墊.教師提出問題(3)學(xué)生分組討論,選代表上臺(tái)演示、回答,每位同學(xué)要著重分析對(duì)題目中的數(shù)量關(guān)系的處理方法.問題(3)是活動(dòng)2的中心環(huán)節(jié),在本次活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注:(1)學(xué)生對(duì)幾何圖形的分析能力;(2)學(xué)生在未知數(shù)的選擇上,能否根據(jù)情況,靈活處理;(3)在討論中能否互相合作;(4)學(xué)生回答問題時(shí)的語(yǔ)言表達(dá)是否準(zhǔn)確.學(xué)生充分的討論,得出多種不同的方法,激發(fā)學(xué)生的學(xué)習(xí)熱情,使學(xué)生體會(huì)解決問題的方法多樣性.為活動(dòng)3埋下一個(gè)伏筆.教師提出問題(4)學(xué)生分組,分別按問題三中所列的方程來(lái)解答,選代表展示解答過(guò)程.教師提出問題(5)學(xué)生充分的討論,豐富解題經(jīng)驗(yàn).〖活動(dòng)3〗某校為了美化校園,準(zhǔn)備在一塊長(zhǎng)32米,寬20米的長(zhǎng)方形場(chǎng)地上修筑若干條寬度相同的道路,余下部分作草坪,并請(qǐng)全校同學(xué)參與設(shè)計(jì),現(xiàn)在有兩位學(xué)生各設(shè)計(jì)了一種方案(如圖),根據(jù)兩種設(shè)計(jì)方案各列出方程,求圖中道路的寬分別是多少?使圖(1),(2)的草坪面積為540米2.教師展示課件,請(qǐng)一位同學(xué)朗讀題目.教師提出問題,學(xué)生回答方案1,學(xué)生通過(guò)探究與討論,活躍了解題思路.教師提出方案(2)學(xué)生思考.因?yàn)橛谢顒?dòng)2的基礎(chǔ),選一位同學(xué)回答這一組問題即可,如有不完全的地方,教師適當(dāng)補(bǔ)充.教師做屏幕演示,特別提醒學(xué)生:剩余草坪的面積,是否就是原草坪的面積減去2條路的面積?以引導(dǎo)學(xué)生注意道路重疊部分的處理.活動(dòng)2是針對(duì)活動(dòng)2的鞏固性練習(xí).《思考》:能不能把縱、橫兩條路移動(dòng)一下,使列方程容易些? 學(xué)生分組討論,教師指導(dǎo).引領(lǐng)學(xué)生 討論后請(qǐng)一位同學(xué)回答.教師引領(lǐng)學(xué)生發(fā)現(xiàn)兩個(gè)圖形都存重疊部分,但除此之外的剩余部分,第一個(gè)圖是一個(gè)完整的矩形,易于表示;而第二個(gè)圖中分為4塊,所以不容易表示.《思考》是活動(dòng)3的中心環(huán)節(jié),以圖形對(duì)比的問題為 引導(dǎo),通過(guò)對(duì)比兩個(gè)圖形的聯(lián)系與區(qū)別,啟發(fā)學(xué)生方案1為模型,構(gòu)建草坪?jiǎn)栴}的解題思路.學(xué)生分組討論,畫圖,上臺(tái)演示.教師與學(xué)生一起評(píng)價(jià),總結(jié)圖形變換的基本原則.在本次活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注:(1)學(xué)生的學(xué)習(xí)效果;(2)使學(xué)生充分體會(huì)圖形變換的靈活性;(3)學(xué)生對(duì)圖形的觀察、聯(lián)想能力;(4)教師要強(qiáng)調(diào)圖形變換中圖形改變、位置改變、關(guān)鍵量不變的原則.在學(xué)生充分的思維活動(dòng)之后,學(xué)生會(huì)自然產(chǎn)生動(dòng)手實(shí)踐的欲望,教師可以給學(xué)生一定的空間去發(fā)揮想象,同時(shí)也要注意對(duì)圖形變換的指導(dǎo),可以對(duì)部分不太合適的答案也進(jìn)行一下點(diǎn)評(píng).〖活動(dòng)4〗 問題 通過(guò)本課的學(xué)習(xí),大家有什么新的收獲和體會(huì)?

      〖活動(dòng)5〗當(dāng)堂測(cè)試

      布置作業(yè): 教科書53頁(yè),習(xí)題21.3第5、8題;教科書58頁(yè),復(fù)習(xí)題21第7、10題,教師應(yīng)重點(diǎn)關(guān)注:

      第三篇:人教版數(shù)學(xué)九年級(jí)上冊(cè)22.3《實(shí)際問題與一元二次方程》精選教案

      人教版數(shù)學(xué)九年級(jí)上冊(cè)22.3《實(shí)際問題與一元二次方程》精選教案

      教學(xué)內(nèi)容

      根據(jù)面積與面積之間的關(guān)系建立一元二次方程的數(shù)學(xué)模型并解決這類問題.教學(xué)目標(biāo)

      掌握面積法建立一元二次方程的數(shù)學(xué)模型并運(yùn)用它解決實(shí)際問題.

      利用提問的方法復(fù)習(xí)幾種特殊圖形的面積公式來(lái)引入新課,解決新課中的問題.重難點(diǎn)關(guān)鍵

      1.重點(diǎn):根據(jù)面積與面積之間的等量關(guān)系建立一元二元方程的數(shù)學(xué)模型并運(yùn)用它解決實(shí)際問題.

      2.難點(diǎn)與關(guān)鍵:根據(jù)面積與面積之間的等量關(guān)系建立一元二次方程的數(shù)學(xué)模型.教具、學(xué)具準(zhǔn)備

      小黑板

      教學(xué)過(guò)程

      一、復(fù)習(xí)引入

      (口述)1.直角三角形的面積公式是什么?一般三角形的面積公式是什么呢?

      2.正方形的面積公式是什么呢?長(zhǎng)方形的面積公式又是什么?

      3.梯形的面積公式是什么?

      4.菱形的面積公式是什么?

      5.平行四邊形的面積公式是什么?

      6.圓的面積公式是什么?

      (學(xué)生口答,老師點(diǎn)評(píng))

      二、探索新知 現(xiàn)在,我們根據(jù)剛才所復(fù)習(xí)的面積公式來(lái)建立一些數(shù)學(xué)模型,解決一些實(shí)際問題. 例1.某林場(chǎng)計(jì)劃修一條長(zhǎng)750m,斷面為等腰梯形的渠道,斷面面積為1.6m2,上口寬比渠深多2m,渠底比渠深多0.4m.

      (1)渠道的上口寬與渠底寬各是多少?

      (2)如果計(jì)劃每天挖土48m3,需要多少天才能把這條渠道挖完?

      分析:因?yàn)榍钭钚。瑸榱吮阌谟?jì)算,不妨設(shè)渠深為xm,則上口寬為x+2,渠底為x+0.4,那么,根據(jù)梯形的面積公式便可建模.

      解:(1)設(shè)渠深為xm

      則渠底為(x+0.4)m,上口寬為(x+2)m

      第四篇:數(shù)學(xué)人教版九年級(jí)上冊(cè)實(shí)際問題與一元二次方程教學(xué)設(shè)計(jì)

      21.3 實(shí)際問題與一元二次方程 第1課時(shí) 實(shí)際問題與一元二次方程(1)

      【知識(shí)與技能】

      會(huì)根據(jù)具體問題中的數(shù)量關(guān)系,列出一元二次方程并求解,能根據(jù)問題中的實(shí)際意義,檢驗(yàn)所得結(jié)果的合理性.【過(guò)程與方法】

      經(jīng)過(guò)“問題情境——建立模型——求解——解釋與應(yīng)用”的過(guò)程中,進(jìn)一步鍛煉學(xué)生的分析問題,解決問題的能力.【情感態(tài)度】

      通過(guò)建立一元二次方程解決實(shí)際問題,體驗(yàn)數(shù)學(xué)的應(yīng)用價(jià)值,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣.【教學(xué)重點(diǎn)】

      構(gòu)建一元二次方程解決實(shí)際問題.【教學(xué)難點(diǎn)】

      會(huì)用代數(shù)式表示問題中的數(shù)量關(guān)系,能根據(jù)問題的實(shí)際意義,檢驗(yàn)所得結(jié)果的合理性.一、導(dǎo)學(xué) 1.導(dǎo)入課題:

      問題1:列方程解應(yīng)用題的基本步驟有哪些?

      問題2:有一人患了流感,經(jīng)過(guò)兩輪傳染后,有121人患了流感,每輪傳染中平均一個(gè)人傳染了幾個(gè)人?

      本節(jié)課我們學(xué)習(xí)一元二次方程的應(yīng)用.(板書課題)2.學(xué)習(xí)目標(biāo):

      列一元二次方程解有關(guān)傳播問題的應(yīng)用題.3.學(xué)習(xí)重、難點(diǎn):

      重點(diǎn):建立一元二次方程模型解決實(shí)際問題.難點(diǎn):探究傳播問題中的等量關(guān)系.4.自學(xué)指導(dǎo):(1)自學(xué)內(nèi)容:教材第19頁(yè)“探究1”.(2)自學(xué)時(shí)間:10分鐘.(3)自學(xué)方法:完成探究提綱.(4)探究提綱:

      ①設(shè)每輪傳染中平均每人傳染了x人.第一輪傳染后共有x+1人患了流感;

      第二輪傳染中的傳染源為x+1人,第二輪后共有x+1+x(x+1)人患了流感.根據(jù)等量關(guān)系“經(jīng)過(guò)兩輪傳染后,有121人患了流感”列出方程x+1+x(x+1)=121.本題的解答過(guò)程:

      設(shè)每輪傳染中平均每人傳染了x人.由題意列式可得x+1+x(x+1)=121, 解方程.得x1=10,x2=-12(不符合題意,舍去).平均一個(gè)人傳染了10個(gè)人.②能有更簡(jiǎn)單的解方程的方法嗎?怎樣求解? 對(duì)方程左邊提取公因式.(x+1)(x+1)=121 ③如果按這樣的傳染速度,三輪傳染后有多少人患了流感?n輪后呢? 經(jīng)過(guò)三輪傳染后共有121×10+121=1331(人)患流感 n輪后患流感的人數(shù)為(1+10)n=11n.④某種電腦病毒傳播非常快,如果一臺(tái)電腦被感染,經(jīng)過(guò)兩輪感染后就會(huì)有81臺(tái)電腦被感染,請(qǐng)你用學(xué)過(guò)的知識(shí)分析,每輪感染中平均一臺(tái)電腦會(huì)感染幾臺(tái)電腦?若病毒得不到有效控制,三輪感染后,被感染的電腦會(huì)不會(huì)超過(guò)700臺(tái)?

      設(shè)每輪感染中平均一臺(tái)電腦會(huì)感染x臺(tái)電腦.依題意1+x+(1+x)x=81,(1+x)2=81,x+1=9或x+1=-9.解得x=8或x=-10(舍去).三輪感染后被感染的電腦臺(tái)數(shù)為(1+x)2+(1+x)2x=(1+x)3=(1+8)3=729>700.答:每輪感染中平均一臺(tái)電腦會(huì)感染8臺(tái)電腦;三輪感染后,被感染的電腦臺(tái)數(shù)會(huì)超過(guò)700臺(tái).⑤某種植物的主干長(zhǎng)出若干數(shù)目的支干,每個(gè)支干又長(zhǎng)出同樣數(shù)目的小分支,主干、支干和小分支的總數(shù)是91,每個(gè)支干長(zhǎng)出多少個(gè)小分支? 設(shè)每個(gè)支干長(zhǎng)出x個(gè)小分支.根據(jù)題意,得1+x+x2=91,即(x-9)(x+10)=0.解得x1=9,x2=-10(舍去).∴每個(gè)支干長(zhǎng)出9個(gè)小分支.二、自學(xué)學(xué)生可參考自學(xué)指導(dǎo)進(jìn)行自學(xué).三、助學(xué) 1.師助生:

      (1)明了學(xué)情:了解學(xué)生是否會(huì)尋找等量關(guān)系、列方程,對(duì)“兩輪傳染”是否真正理解.(2)差異指導(dǎo):指導(dǎo)學(xué)生尋找等量關(guān)系、列方程的過(guò)程.2.生助生:小組內(nèi)互相交流、研討.四、強(qiáng)化

      1.點(diǎn)一名學(xué)生口答探究提綱第③題,點(diǎn)兩名學(xué)生板演第④、⑤題,并點(diǎn)評(píng).2.“傳播問題”的兩種模型: 問題④:傳染源參與兩輪傳染; 問題⑤:傳染源只參與第一輪傳染.3.總結(jié)列一元二次方程解決實(shí)際問題的一般步驟:審、設(shè)、找、列、解、答,最后要檢驗(yàn)根是否符合實(shí)際意義.五、評(píng)價(jià)

      1.學(xué)生的自我評(píng)價(jià)(圍繞三維目標(biāo)):這節(jié)課你學(xué)到了哪些知識(shí)?有何收獲或不足? 2.教師對(duì)學(xué)生的評(píng)價(jià):

      (1)表現(xiàn)性評(píng)價(jià):點(diǎn)評(píng)學(xué)生的學(xué)習(xí)態(tài)度、積極性、小組相互交流情況以及不足之處等.(2)紙筆評(píng)價(jià):課堂評(píng)價(jià)檢測(cè).3.教師的自我評(píng)價(jià)(教學(xué)反思):

      (1)教師引導(dǎo)熟悉列一元二次方程解決實(shí)際問題的步驟,創(chuàng)設(shè)問題推導(dǎo)出列一元二次方程解決實(shí)際問題的一般思路,有利于學(xué)生掌握列一元二次方程解決實(shí)際問題的方法.(2)傳播類問題是一元二次方程中的重點(diǎn)問題,經(jīng)過(guò)“問題情境——建立模型——求解——解釋與應(yīng)用”的過(guò)程,進(jìn)一步鍛煉學(xué)生分析問題、解決問題的能力.1.布置作業(yè):從教材“習(xí)題21.3”中選取.一、基礎(chǔ)鞏固(70分)1.(10分)生物興趣小組的學(xué)生,將自己收集的標(biāo)本向本組其他成員各贈(zèng)送一件,全組共互贈(zèng)了182件,如果全組有x名同學(xué),那么根據(jù)題意列出的方程是(B)A.x(x+1)=182

      B.x(x-1)=182

      C.2x(x+1)=182

      D.x(1-x)=182×2 2.(30分)有一人患了流感,經(jīng)過(guò)兩輪傳染后共有64人患了流感.(1)求每輪傳染中平均一個(gè)人傳染了幾個(gè)人?(2)如果不及時(shí)控制,第三輪將又有多少人被傳染? 解:(1)設(shè)每輪傳染中平均一個(gè)人傳染了x個(gè)人.依題意1+x+(1+x)x=64,即(x+1)2=64,解得x1=7,x2=-9(舍去).答:每輪傳染中平均一個(gè)人傳染了7個(gè)人.(2)第三輪被傳染的人數(shù)為(1+x)2·x=(1+7)2×7=448.答:第三輪將有448人被傳染.3.(30分)參加足球聯(lián)賽的每?jī)申?duì)之間都進(jìn)行了兩次比賽(雙循環(huán)比賽),共要比賽90場(chǎng),共有多少個(gè)隊(duì)參加了比賽?

      解:設(shè)共有x個(gè)隊(duì)參加了比賽.依題意x(x-1)=90.解得x1=10, x2=-9(舍去).答:共有10個(gè)隊(duì)參加了比賽.二、綜合應(yīng)用(20分)4.(20分)有一人利用手機(jī)發(fā)送短信,獲得信息的人也按他的發(fā)送人數(shù)發(fā)送了該條短信息,經(jīng)過(guò)兩輪短信發(fā)送,共有90人的手機(jī)上獲得同一信息,則每輪平均一個(gè)人向多少人發(fā)送短信?

      解:設(shè)每輪平均一個(gè)人向x人發(fā)送短信.由題意,得x+x2=90.解得:x1=9,x2=-10(舍去).答:每輪平均一個(gè)人向9個(gè)人發(fā)送短信.三、拓展延伸(10分)5.(10分)一個(gè)數(shù)字和為10的兩位數(shù),把個(gè)位與十位數(shù)字對(duì)調(diào)后得到一個(gè)兩位數(shù),這兩個(gè)兩位數(shù)之積是2296,則這個(gè)兩位數(shù)是多少?

      解:設(shè)這個(gè)數(shù)十位上數(shù)字為x,則個(gè)位數(shù)字為(10-x),原數(shù)為10x+(10-x)=9x+10.對(duì)調(diào)后得到的數(shù)為10(10-x)+x=100-9x.依題意(9x+10)(100-9x)=2296.解得.x1=8,x2=2.當(dāng)x=8時(shí),這個(gè)兩位數(shù)是82;當(dāng)x=2時(shí),這個(gè)兩位數(shù)是28.答:這個(gè)兩位數(shù)是82或28.1.教師引導(dǎo)學(xué)生熟悉列一元二次方程解應(yīng)用題的步驟,創(chuàng)設(shè)問題推導(dǎo)出列一元二次方程解應(yīng)用題的步驟,有利于學(xué)生熟練掌握用一元二次方程解應(yīng)用題的步驟.2.傳播類和增長(zhǎng)率問題是一元二次方程中的重點(diǎn)問題,本設(shè)計(jì)問題中反映出不同的“傳播”和增長(zhǎng)率,有利于學(xué)生更好地掌握這一問題.

      第五篇:九年級(jí)數(shù)學(xué)上冊(cè) 21.3 實(shí)際問題與一元二次方程教案 (新版)新人教版

      21.3實(shí)際問題與一元二次方程

      教學(xué)目標(biāo)

      1、本節(jié)課主要學(xué)習(xí)建立一元二次方程的數(shù)學(xué)模型解決平均變化率問題。

      2、能根據(jù)具體問題中的數(shù)量關(guān)系,列出一元二次方程,體會(huì)方程是刻畫現(xiàn)實(shí)世界的一個(gè)有效的數(shù)學(xué)模型.

      3、能根據(jù)具體問題的實(shí)際意義,檢驗(yàn)結(jié)果是否合理.

      4、通過(guò)用一元二次方程解決身邊的問題,體會(huì)數(shù)學(xué)知識(shí)應(yīng)用的價(jià)值. 重難點(diǎn)、關(guān)鍵

      重點(diǎn):列一元二次方程解有關(guān)平均變化率問題的應(yīng)用題 難點(diǎn):發(fā)現(xiàn)平

      中的等

      關(guān)

      關(guān)鍵:建立一元二次方程的數(shù)學(xué)模型 教學(xué)準(zhǔn)備

      教師準(zhǔn)備:制作課件,精選習(xí)題

      學(xué)生準(zhǔn)備:復(fù)習(xí)有關(guān)知識(shí),預(yù)習(xí)本節(jié)課內(nèi)容 教學(xué)過(guò)程

      一 展示學(xué)習(xí)目標(biāo)(使學(xué)生明確本節(jié)課學(xué)習(xí)目標(biāo),具體內(nèi)容如下)學(xué)習(xí)目標(biāo)

      1、本節(jié)課主要學(xué)習(xí)建立一元二次方程的數(shù)學(xué)模型解決平均變化率問題。

      2、能根據(jù)具體問題中的數(shù)量關(guān)系,列出一元二次方程,體會(huì)方程是刻畫現(xiàn)實(shí)世界的一個(gè)有效的數(shù)學(xué)模型.

      3、能根據(jù)具體問題的實(shí)際意義,檢驗(yàn)結(jié)果是否合理.

      4、通過(guò)用一元二次方程解決身邊的問題,體會(huì)數(shù)學(xué)知識(shí)應(yīng)用的價(jià)值.

      二 展示學(xué)習(xí)要求(學(xué)生對(duì)照要求自學(xué),教師巡視并做個(gè)別輔)學(xué)習(xí)要求

      1、某農(nóng)戶第一年的糧食產(chǎn)量為6萬(wàn)kg,平均每年的增長(zhǎng)率為20%,第二年的產(chǎn)量為____________萬(wàn)kg,第三年的產(chǎn)量為____________萬(wàn)kg ;某商品原價(jià)每件100元連續(xù)兩次降價(jià),平均每次降低率為10%,第一次降價(jià)后價(jià)格為每件________元,第二次降價(jià)后價(jià)格為每件________元

      通過(guò)以上兩題你能發(fā)現(xiàn)關(guān)于兩次平均增長(zhǎng)(降低)率問題的一般關(guān)系嗎?(用A表示基數(shù),X表示平均增長(zhǎng)(降低)率,B表示新數(shù))

      2、學(xué)校圖書館去年年底有圖書5萬(wàn)冊(cè),預(yù)計(jì)到明年年底增加到7.2萬(wàn)冊(cè).求這兩年的年平均增長(zhǎng)率.設(shè)年平均增長(zhǎng)率為X,則可列方程為____________。

      3、對(duì)照課本46頁(yè)探究2內(nèi)容,完成下列問題:

      (1)甲種藥品成本的年平均下降額為 元,?乙種藥品成本的年平均下降額為 元,顯然,乙種藥品成本的年平均下降額較 .

      (2)設(shè)甲種藥品成本的年平均下降率為x,則一年后甲種藥品成本為 元,兩年后甲種藥品成本為

      元.從而可列方程為

      。解得X=。

      請(qǐng)求出乙種藥品成本的年平均下降率,并比較兩種藥品成本的年平均下降率。

      4、完成P46最后的“思考”:成本下降額較大的藥品,成本下降率一定也較大嗎? 三 后教

      1、學(xué)習(xí)小組同學(xué)之間互教,解決自學(xué)過(guò)程中存在的問題;

      2、教師引導(dǎo)學(xué)生解決學(xué)習(xí)要求中的問題,對(duì)同學(xué)普遍存在的問題請(qǐng)會(huì)解決的小組代表回答,學(xué)生解決不了的問題教師進(jìn)一步強(qiáng)調(diào)并重點(diǎn)點(diǎn)評(píng)。四 當(dāng)堂訓(xùn)練

      列方程解運(yùn)用題

      練習(xí)

      1、某鋼鐵廠去年1月某種鋼產(chǎn)量為5000噸,3月上升到7200噸,這兩個(gè)月平均每月增長(zhǎng)的百分率是多少?

      練習(xí)

      2、某種藥劑原售價(jià)為4元, 經(jīng)過(guò)兩次降價(jià), 現(xiàn)在每瓶售價(jià)為2.56元,問平均每次降價(jià)百分之幾? 五 小結(jié)(通過(guò)提問引導(dǎo)學(xué)生回答)

      (一)列方程解應(yīng)用題的一般步驟是: 審、設(shè)、列、解、驗(yàn)、答

      1、審:審清題意:已知什么,求什么?

      2、設(shè):設(shè)未知數(shù),語(yǔ)句要完整,有單位(同一)的要注明單位;

      3、列:列代數(shù)式,找出相等關(guān)系列方程;

      4、解:解所列的方程;

      5、驗(yàn):是否是所列方程的根;是否符合題意;

      6、答:答案也必需是完整的語(yǔ)句,注明單位且要貼近生活.列方程解應(yīng)用題的關(guān)鍵是: 找出相等關(guān)系.(二)關(guān)于兩次平均增長(zhǎng)(降低)率問題的一般關(guān)系:

      A(1±x)2=B(其中A 表示基數(shù),x表表示增長(zhǎng)(或降低)率,B表示新數(shù))六布置作業(yè):

      1完成課本P 48頁(yè)綜合運(yùn)用第7題 2完成課本P53 頁(yè)綜合運(yùn)用第9題

      下載九年級(jí)數(shù)學(xué)上冊(cè)21.3.2實(shí)際問題與一元二次方程_增長(zhǎng)率問題教案新人教版(5篇范文)word格式文檔
      下載九年級(jí)數(shù)學(xué)上冊(cè)21.3.2實(shí)際問題與一元二次方程_增長(zhǎng)率問題教案新人教版(5篇范文).doc
      將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦