第一篇:2.2直線、平面平行的判定及其性質(zhì) 教案2
直線和平面平行的判定與性質(zhì)
(一)一、素質(zhì)教育目標(biāo)
(一)知識教學(xué)點(diǎn)
1.直線和平面平行的定義.
2.直線和平面的三種位置關(guān)系及相應(yīng)的圖形畫法與記法. 3.直線和平面平行的判定.
(二)能力訓(xùn)練點(diǎn)
1.理解并掌握直線和平面平行的定義.
2.掌握直線和平面的三種位置關(guān)系,體現(xiàn)了分類的思想.
3.通過對比的方法,使學(xué)生掌握直線和平面的各種位置關(guān)系的圖形的畫法,進(jìn)一步培養(yǎng)學(xué)生的空間想象能力.
4.掌握直線和平面平行的判定定理的證明,證明用的是反證法和空間直線與平面的位置關(guān)系,進(jìn)一步培養(yǎng)學(xué)生嚴(yán)格的邏輯思維。除此之外,還要會(huì)靈活運(yùn)用直線和平面的判定定理,把線面平行轉(zhuǎn)化為線線平行.
(三)德育滲透點(diǎn)
讓學(xué)生認(rèn)識到研究直線與平面的位置關(guān)系及直線與平面平行是實(shí)際生產(chǎn)的需要,充分體現(xiàn)了理論來源于實(shí)踐,并應(yīng)用于實(shí)踐.
二、教學(xué)重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決方法
1.教學(xué)重點(diǎn):直線與平面的位置關(guān)系;直線與平面平行的判定定理. 2.教學(xué)難點(diǎn):掌握直線與平面平行的判定定理的證明及應(yīng)用.
3.教學(xué)疑點(diǎn):除直線在平面內(nèi)的情形外,空間的直線和平面,不平行就相交,課本中用記號a≮α統(tǒng)一表示a‖α,a∩α=A兩種情形,統(tǒng)稱直線a在平面α外.
三、課時(shí)安排
1.7直線和平面的位置關(guān)系與1.8直線和平面平行的判定與性質(zhì)這兩個(gè)課題安排為2課時(shí).本節(jié)課為
注意,如圖1-58畫法就不明顯我們不提倡這種畫法.
下面請同學(xué)們完成P.19.練習(xí)1.
1.觀察圖中的吊橋,說出立柱和橋面、水面,鐵軌和橋面、水面的位置關(guān)系:(圖見課本)
答:立柱和橋面、水面都相交;鐵軌在橋面內(nèi),鐵軌與水面平行.
(二)直線和平面平行的判定
師:直線和平面平行的判定不僅可以根據(jù)定義,一般用反證法,還有以下的方法.我們先來觀察:門框的對邊是平行的,如圖1-59,a∥b,當(dāng)門扇繞著一邊a轉(zhuǎn)動(dòng)時(shí),另一邊b始終與門扇不會(huì)有公共點(diǎn),即b平行于門扇.由此我們得到:
直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行.
求證:a∥α.
師提示:要證明直線與平面平行,只有根據(jù)定義,用反證法,并結(jié)合空間直線和平面的位置關(guān)系來證明.
∴ a∥α或 a∩α=A. 下面證明a∩α=A不可能. 假設(shè)a∩α=A ∵a∥b,在平面α內(nèi)過點(diǎn)A作直線c∥b.根據(jù)公理4,a∥c.這和a∩c=A矛盾,所以a∩α=A不可能.
∴a∥α.
師:從上面的判定定理可以知道,今后要證明一條直線和一個(gè)平面平行,只要在這個(gè)平面內(nèi)找出一條直線和已知直線平行,就可斷定這條已知直線必和這個(gè)平面平行,即可由線線平行推得線面平行.
下面請同學(xué)們完成例題和練習(xí).
(三)練習(xí)
例1 空間四邊形相鄰兩邊中點(diǎn)的連線,平行于經(jīng)過另外兩邊的平面. 已知:空間四邊形ABCD中,E、F分別是AB、AD的中點(diǎn). 求證:EF∥平面BCD.
師提示:根據(jù)直線與平面平行的判定定理,要證明EF∥平面BCD,只要在平面BCD內(nèi)找一直線與EF平行即可,很明顯原平面BCD內(nèi)的直線BD∥EF.
證明:連結(jié)BD.
性,這三個(gè)條件是證明直線和平面平行的條件,缺一不可. 練習(xí)(P.22練習(xí)1、2.)
1.使一塊矩形木板ABCD的一邊AB緊靠桌面α,并繞AB轉(zhuǎn)動(dòng),AB的對邊CD在各個(gè)位置時(shí),是不是都和桌面α平行?為什么?(模型演示)
答:不是.
2.長方體的各個(gè)面都是矩形,說明長方體每一個(gè)面的各邊及對角線為什么都和相對的面平行?(模型演示)
答:因?yàn)殚L方體每一個(gè)面的對邊及對角線都和相對的面內(nèi)的對應(yīng)部分平行,所以,它們都和相對的面平行.
(四)總結(jié)
這節(jié)課我們學(xué)習(xí)了直線和平面的三種位置關(guān)系及直線和平面平行的兩種判定方法.學(xué)習(xí)直線和平面平行的判定定理,關(guān)鍵是要會(huì)把線面平行轉(zhuǎn)化為線線平行來解題.
五、作業(yè)
P.22中習(xí)題三1、2、3、4.
六、板書設(shè)計(jì)
一、直線和平面的位置關(guān)系直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn). 直線在平面外
二、直線和平面平行的判定 1.根據(jù)定義:一般用反證法.
2.根據(jù)判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行.
直線和平面的位置關(guān)系:
直線和平面平行的判定定理
求證:a∥α 例:
已知:空間四邊形ABCD中,E、F分別是AB、AD的中點(diǎn). 求證:EF∥平面BCD.
第二篇:2.2.1直線與平面平行判定公開課教案(必修2)
§2.2 直線、平面平行的判定及其性質(zhì)教案(3課時(shí))
§2.2.1 直線與平面平行的判定(1課時(shí))
四川瀘縣二中吳超
一、教學(xué)目標(biāo):
1、知識與技能
(1)理解并掌握直線與平面平行的判定定理;
(2)進(jìn)一步培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)的能力和空間想象能力;
2、過程與方法
學(xué)生通過觀察圖形,借助已有知識,通過探索得出直線與平面平行的判定定理,并掌握直線與平面平行的判定定理及其靈活應(yīng)用。
3、情感、態(tài)度與價(jià)值觀
(1)讓學(xué)生在發(fā)現(xiàn)中學(xué)習(xí),增強(qiáng)學(xué)習(xí)的積極性;
(2)讓學(xué)生了解空間與平面互相轉(zhuǎn)換的數(shù)學(xué)思想。
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):直線與平面平行的判定定理及應(yīng)用。
難點(diǎn):直線與平面平行的判定定理的探索及應(yīng)用。
三、學(xué)法與教學(xué)用具
學(xué)法:學(xué)生借助實(shí)例,通過觀察、思考、交流、討論等,理解判定定理。教學(xué)用具:投影儀(片)
四、教學(xué)過程設(shè)計(jì)
(一)知識準(zhǔn)備、新課引入
提問1:根據(jù)公共點(diǎn)的情況,空間中直線a和平面?有哪幾種位置關(guān)系?并
為a??
提問2:根據(jù)直線與平面平行的定義(沒有公共點(diǎn))來判定直線與平面平行你認(rèn)為方便嗎?談?wù)勀愕目捶?,并指出是否有別的判定途徑。
(二)判定定理的探求過程
1、直觀感知
提問:根據(jù)同學(xué)們?nèi)粘I畹挠^察,你們能感知到并舉出直線與平面平行的具體事例嗎? 我們把直線與平面相交或平行的位置關(guān)系統(tǒng)稱為直線在平面外,用符號表示
生1:例舉日光燈與天花板,樹立的電線桿與墻面。
生2:門轉(zhuǎn)動(dòng)到離開門框的任何位置時(shí),門的邊緣線始終與門框所在的平面平行(由學(xué)生到教室門前作演示),然后教師用多媒體動(dòng)畫演示。
2、動(dòng)手實(shí)踐
教師取出預(yù)先準(zhǔn)備好的直角梯形泡沫板演示:當(dāng)把互相平行的一邊放在講臺桌面上并轉(zhuǎn)動(dòng),觀察另一邊與桌面的位置給人以平行的感覺,而當(dāng)把直角腰放在桌面上并轉(zhuǎn)動(dòng),觀察另一邊與桌面給人的印象就不平行。
3、探究思考
(1)上述演示的直線與平面位置關(guān)系為何有如此的不同?關(guān)鍵是什么因素起了作用呢?通過觀察感知發(fā)現(xiàn)直線與平面平行,關(guān)鍵是三個(gè)要素:①平面外一條線②平面內(nèi)一條直線③這兩條直線平行
(2)如果平面外的直線a與平面?內(nèi)的一條直線b平行,那么直線a與平面?平行嗎?進(jìn)行證明
4、歸納確認(rèn):(多媒體幻燈片演示)
直線和平面平行的判定定理:平面外的一條直線與平面內(nèi)的一條直線平行,則該直線和這個(gè)平面平行。
簡單概括:(內(nèi)外)線線平行?線面平行
a???
?
符號表示:b????a||?
a||b??
溫馨提示:
作用:判定或證明線面平行。
關(guān)鍵:在平面內(nèi)找(或作)出一條直線與面外的直線平行。思想:空間問題轉(zhuǎn)化為平面問題
(三)歸納形成定理
先由學(xué)生口頭總結(jié),然后教師歸納總結(jié)(由多媒體幻燈片展示):
1、線面平行的判定定理:平面外的一條直線與平面內(nèi)的一條直線平行,則該直線與這個(gè)平面平行。
a???
?
2、定理的符號表示:b????a||?
a||b??
簡述:(內(nèi)外)線線平行則線面平行
3、定理運(yùn)用的關(guān)鍵是找(作)面內(nèi)的線與面外的線平行,途徑有:取中點(diǎn)
利用平行四邊形或三角形中位線性質(zhì)等。
【練習(xí)1】(師生共做):如圖,長方體ABCD—A1B1C1D1中,①與AB平行的平面是_______________
②與AA1平行的平面是________________ ③與AD平行的平面是__________________
B
1(四)應(yīng)用定理,鞏固與提高
例1: 空間四邊形相鄰兩邊中點(diǎn)的連線,平行于經(jīng)過另外兩邊的平面.
已知:空間四邊形ABCD中,E、F分別是AB
求證:EF∥平面BCD.
1.分析:根據(jù)直線與平面平行的判定定理,要證明EF∥平面BCD,只要在平面BCD內(nèi) 找一直線與EF平行即可,很明顯原平面BCD 內(nèi)的直線BD∥EF.
2.師生共做:證明:連結(jié)BD.
性,這三個(gè)條件
是證明直線和平面平行的條件,缺一不可.
變式(學(xué)生活動(dòng)):空間四邊形ABCD中,E、F分別是 1
1AB、AD上的點(diǎn),且AE=AB,AF=AD
33求證:EF∥平面BCD.
F
小結(jié):通過證明線線平行來證明線面平行,蘊(yùn)含數(shù)學(xué)轉(zhuǎn)化思想,關(guān)鍵在于找平行線,故又要用到中位線定理等;判定定理三個(gè)條件缺一不可。例2是平行四邊形ABCD外一點(diǎn)同M,N分別是
PC,AB的中點(diǎn)。求證:MN//平面PAD 1.分析:取PD中點(diǎn)。
2.學(xué)生活動(dòng):思考并書寫證明過程。3.教師點(diǎn)評:指出可能的典型錯(cuò)誤。
P
C
【練習(xí)2】(獨(dú)立完成,再交流)正方體ABCD—A1B1C1D1中,有為DD1的中點(diǎn),試判斷
BD1與平面AEC的位置關(guān)系,并說明理由。
C
(五)課堂活動(dòng)(探索思考題):
如圖,正方體ABCD-A1B1C1 D1中,E、F分別是棱BC、C1D1上的中點(diǎn).求證:EF∥平面BB1D1D.D
AD
1F 1
C1
C
學(xué)生利用學(xué)習(xí)小組討論、交流;教師分組指導(dǎo);總結(jié)、交流。
(六)歸納整理
1、同學(xué)們在運(yùn)用該判定定理時(shí)應(yīng)注意什么?
2、在解決空間幾何問題時(shí),常將之轉(zhuǎn)換為平面幾何問題。
(七)作業(yè)布置
§2.2.1 直線與平面平行的判定(B28)題單
(八)板書設(shè)計(jì)
(九)教學(xué)反思
第三篇:2.2 直線、平面平行的判定及其性質(zhì) 教學(xué)設(shè)計(jì) 教案
教學(xué)準(zhǔn)備
1.教學(xué)目標(biāo)
1、知識與技能
(1)理解并掌握直線與平面平行的判定定理;
(2)進(jìn)一步培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)的能力和空間想象能力;
2、過程與方法
學(xué)生通過觀察圖形,借助已有知識,掌握直線與平面平行的判定定理。
3、情感、態(tài)度與價(jià)值觀
(1)讓學(xué)生在發(fā)現(xiàn)中學(xué)習(xí),增強(qiáng)學(xué)習(xí)的積極性;(2)讓學(xué)生了解空間與平面互相轉(zhuǎn)換的數(shù)學(xué)思想。
2.教學(xué)重點(diǎn)/難點(diǎn)
重點(diǎn)、難點(diǎn):直線與平面平行的判定定理及應(yīng)用。
3.教學(xué)用具
投影儀等.4.標(biāo)簽
數(shù)學(xué),立體幾何
教學(xué)過程
(一)創(chuàng)設(shè)情景、揭示課題
引導(dǎo)學(xué)生觀察身邊的實(shí)物,如教材第55頁觀察題:封面所在直線與桌面所在平面具有什么樣的位置關(guān)系?如何去確定這種關(guān)系呢?這就是我們本節(jié)課所要學(xué)習(xí)的內(nèi)容。
(二)研探新知
學(xué)生思考后,師生共同探討,得出以下結(jié)論
直線與平面平行的判定定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。
簡記為:線線平行,則線面平行。符號表示:
2、例1 引導(dǎo)學(xué)生思考后,師生共同完成
該例是判定定理的應(yīng)用,讓學(xué)生掌握將空間問題轉(zhuǎn)化為平面問題的化歸思想。
(三)自主學(xué)習(xí)、發(fā)展思維 練習(xí):教材第57頁 1、2題
讓學(xué)生獨(dú)立完成,教師檢查、指導(dǎo)、講評。
(四)歸納整理
1、同學(xué)們在運(yùn)用該判定定理時(shí)應(yīng)注意什么?
2、在解決空間幾何問題時(shí),常將之轉(zhuǎn)換為平面幾何問題。
(五)作業(yè)
1、教材第64頁習(xí)題2.2 A組第3題;
2、預(yù)習(xí):如何判定兩個(gè)平面平行?
課堂小結(jié)
1、同學(xué)們在運(yùn)用該判定定理時(shí)應(yīng)注意什么?
2、在解決空間幾何問題時(shí),常將之轉(zhuǎn)換為平面幾何問題。
課后習(xí)題 作業(yè)
1、教材第62頁習(xí)題2.2 A組第3題;
2、預(yù)習(xí):如何判定兩個(gè)平面平行?
板書 略
第四篇:直線與平面平行判定定理說課稿
直線與平面平行說課稿
一、教材分析
本節(jié)課是在人教版數(shù)學(xué)必修二第二章第二節(jié)直線與平面平行的判定。主要學(xué)習(xí)直線和平面平行的判定定理,以及初步應(yīng)用。它與前面所學(xué)習(xí)的平面幾何中兩條直線的位置關(guān)系以及立體幾何中直線與平面的位置關(guān)系等知識都有密切的關(guān)系,而其本身就是判斷直線與平面平行的的一個(gè)重要的方法;同時(shí)又是后面將要學(xué)習(xí)的平面與平面位置關(guān)系的基礎(chǔ),又是連接線線平行和面面平行的紐帶!
二、教學(xué)目標(biāo)
考慮到學(xué)生的接受能力和課容量以及《課程標(biāo)準(zhǔn)》的要求,本節(jié)課只要求學(xué)生在線面平行定義的基礎(chǔ)上探究線面平行的判定定理并進(jìn)行定理的初步運(yùn)用。故而本節(jié)課教學(xué)目標(biāo)為:
知識方面:通過對圖片,實(shí)例的觀察以及實(shí)踐操作,初步感知直線與平面平行的判定定理。
能力方面:通過直觀感知操作確認(rèn)歸納線面平行的判定定理,并將歸納用客觀論證說明,并能運(yùn)用判定定理證明一些空間位置關(guān)系的簡單命題,進(jìn)一步培養(yǎng)學(xué)生的空間觀念 情感方面:讓學(xué)生親身經(jīng)歷數(shù)學(xué)研究的過程,體驗(yàn)探索的樂趣,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣
三、教學(xué)難點(diǎn)與重點(diǎn)
由于學(xué)生的抽象概括能力,空間想象力還有待提高,線面平行的定義比較抽象,要讓學(xué)生體會(huì)“直線與平面無公共點(diǎn)”有一定困難,線面平行的判定的發(fā)現(xiàn)有一定隱蔽性,所以我確定本節(jié)的重點(diǎn)是:通過觀察和操作確認(rèn)直觀感知概括出線面平行的判定定理
難點(diǎn)是:應(yīng)用反證法客觀證明直觀感知及確認(rèn)定理。
四、教學(xué)過程
(一)、復(fù)習(xí)空間直線的位置關(guān)系及空間直線與平面的位置關(guān)系,為課程的進(jìn)展做好必備知識的準(zhǔn)備
(二).定理的探求
本環(huán)節(jié)是教學(xué)的第一個(gè)重點(diǎn),分四步
a創(chuàng)設(shè)情境,感知概念
用多媒體展示日常生活中的常見線面平行的實(shí)例提出思考問題:如何判定一條直線與一個(gè)平面平行?
b觀察歸納,猜想定理
將事例轉(zhuǎn)化為具體的直線與平面,通過提問逐漸引導(dǎo)學(xué)生思考平外一條直線與平面內(nèi)的一條直線平行是否可以得到直線與平面平行。教師用準(zhǔn)備好的直角梯形演示平面外一條直線與平面內(nèi)的一條直線平行時(shí),該直線與平面給人平行的印象,引導(dǎo)學(xué)生有直觀感受猜想出當(dāng)直線與平面內(nèi)一條直線平行時(shí),該直線與平面平行。
c客觀證明,確認(rèn)定理
教師帶領(lǐng)學(xué)生將猜想出的結(jié)果用反證法進(jìn)行客觀的論證說明,確認(rèn)猜想正確并給出定理的文字描述,及符號描述。這一環(huán)節(jié)深化猜想,是其具有較強(qiáng)的確定性,使學(xué)生經(jīng)歷從實(shí)際背景中抽象出幾何概念的全過程,從而形成完整和正確的概念,最后通過客觀證明,加緊學(xué)生對定理形成,這種立足于感性認(rèn)識的歸納過程,即由特殊到一般,由具體到抽象,既有利于學(xué)生對定理本質(zhì)的理解,又使學(xué)生的抽象思維得到發(fā)展,培養(yǎng)學(xué)生幾何直觀能力。d質(zhì)疑反思,深化定理
強(qiáng)調(diào)定理中的條件以及應(yīng)注意的問題。
判斷正誤:如果a,b是兩條直線,并且a平行于b,那么a平行于經(jīng)過b的任何平面
(突出一條線在面內(nèi),一條線在面外)
強(qiáng)調(diào)深化平面與直線平行的必須條件a在平面內(nèi),b在平面外,a平行于b
(三)定理初步應(yīng)用
課本例一
空間四邊形相鄰兩邊中點(diǎn)的連線,平行于經(jīng)過另外兩邊的平面
考慮到學(xué)生處于初學(xué)階段,此題可以幫助學(xué)生由線面的感性認(rèn)識上升的理性認(rèn)識。練習(xí),第一題,找出長方體ABCD-A’B’C’D’與AB平行的面及與AA’平行的面,與AD平行的面。讓學(xué)生對定理的條件進(jìn)一步理解加深鞏固。
(四)反思提高,小結(jié)課程
教師給出問題:
1.通過這節(jié)課的學(xué)習(xí),你學(xué)會(huì)了哪些線面平行的方法?
2.證明線面平行時(shí),注意哪些問題?
側(cè)重三點(diǎn):
(1)歸納線面平行的判斷方法
一、定義
二、判定定理
(2)說明本課蘊(yùn)含轉(zhuǎn)化、類比、歸納、猜想等數(shù)學(xué)思想方法,強(qiáng)調(diào)“平面化”是解決立體幾何問題的一般思路
(五)布置作業(yè)
在學(xué)習(xí)定理之后,讓學(xué)生自己應(yīng)用定理自主做題,通過運(yùn)用更深刻的掌握定理,加深鞏固。
五、板書設(shè)計(jì)(略)
六、教學(xué)媒體使用
在教學(xué)過程中,用多媒體展示復(fù)習(xí)的知識,以及教學(xué)過程中的圖片,使學(xué)生在較短的時(shí)間內(nèi)回顧所學(xué)知識,并直觀感受生活中直線與平面平行的例子,將抽象的想象用多媒體展示圖片具體化,并提高課堂時(shí)間的利用率。
七、教法學(xué)法
教法:通過對大量實(shí)例、圖片的觀察感知,模型的分析猜想,實(shí)驗(yàn)直觀感知發(fā)現(xiàn)線面平行的判定定理。學(xué)生在問題的帶動(dòng)下,進(jìn)行主動(dòng)的思維活動(dòng),經(jīng)歷從現(xiàn)實(shí)生活中抽象出幾何圖形和幾何問題的過程,體會(huì)轉(zhuǎn)化、歸納、猜想等數(shù)學(xué)思想方法在解決問題中的作用,發(fā)展學(xué)生的合情推理能力和空間想象力,培養(yǎng)學(xué)生的質(zhì)疑、思辨、創(chuàng)新的精神。并在課程結(jié)束時(shí),對整堂課的內(nèi)容進(jìn)行歸納總結(jié),使學(xué)生能夠系統(tǒng)的掌握所學(xué)知識。
學(xué)法:課前安排學(xué)生列舉生活中線面平行的實(shí)例,從中體現(xiàn)出學(xué)生活躍的思維,濃厚的興趣,強(qiáng)烈的參與意識和自主探究能力,在初中學(xué)生已經(jīng)掌握了平面內(nèi)證明線線平行的方法,前面又剛剛學(xué)過在空間中直線的位置關(guān)系,以及直線與平面的位置關(guān)系,對空間概念的建立有一定基礎(chǔ),因而以采用觀察歸納猜想論證的方法學(xué)習(xí)本課。
八、教學(xué)反思
教學(xué)中時(shí)刻注意素質(zhì)教育的要求,緊緊圍繞《課程標(biāo)準(zhǔn)》中的要求,真正讓學(xué)生動(dòng)手操作,動(dòng)腦思考,體驗(yàn)數(shù)學(xué)學(xué)習(xí)和研究的過程和方法,使學(xué)生投入其中,樂此不疲,主動(dòng)探究,防止教師為趕進(jìn)度,趕時(shí)間用自己的思路代替學(xué)生思路,強(qiáng)加到學(xué)生身上,弱化學(xué)生本身強(qiáng)烈的求知欲。
第五篇:2.2平面與平面平行的性質(zhì) 教案2
《2.2.4平面與平面平行的性質(zhì)》教學(xué)設(shè)計(jì)
一、教學(xué)內(nèi)容:
人教版新教材 高二數(shù)學(xué) 第二冊 第二章 第二節(jié) 第4課
二、教材分析:
直線與平面問題是高考考查的重點(diǎn)之一,求解的關(guān)鍵是根據(jù)線與面之間的互化關(guān)系,借助創(chuàng)設(shè)輔助線與面,找出符號語言與圖形語言之間的關(guān)系把問題解決。通過對有關(guān)概念和定理的概括、證明和應(yīng)用,使學(xué)生體會(huì)“轉(zhuǎn)化”的觀點(diǎn),提高學(xué)生的空間想象能力和邏輯推理能力。
三、教學(xué)目標(biāo):
1、知識與技能
(1)掌握兩個(gè)平面平行的性質(zhì)定理及其應(yīng)用。
(2)提高分析解決問題的能力,進(jìn)一步滲透等價(jià)轉(zhuǎn)化的思想。
2、情感態(tài)度與價(jià)值觀
(1)進(jìn)一步提高學(xué)生空間想象能力、思維能力;(2)進(jìn)一步體會(huì)類比的作用;(3)通過證明問題,樹立創(chuàng)新意識。
四、教學(xué)重、難點(diǎn):
1.重點(diǎn):兩個(gè)平面平行的性質(zhì)定理的探索過程及應(yīng)用。2.難點(diǎn):兩個(gè)平面平行的性質(zhì)定理的探究發(fā)現(xiàn)及其應(yīng)用。
五、教學(xué)理念:
學(xué)生是學(xué)習(xí)和發(fā)展的主體,教師是教學(xué)活動(dòng)的組織者和引導(dǎo)者。學(xué)生通過觀察與類比,借助實(shí)物模型理解性質(zhì)及應(yīng)用。
六、設(shè)計(jì)思路:
由直線與直線的平行的定義得到的兩個(gè)平面平行性質(zhì)定理是證明直線與直線平行的重要方法。在兩個(gè)平面平行的性質(zhì)定理的研究中,重在引導(dǎo)學(xué)生如何將兩個(gè)平面平行的問題轉(zhuǎn)化為直線與直線平行、直線與平面平行的問題。
七、教學(xué)過程:
(一)溫故知新
1.兩個(gè)平面的位置關(guān)系? 2.面面平行的判定方法:
(1)定義法:若兩平面無公共點(diǎn),則兩平面平行.(2)判定定理:
如果一個(gè)平面內(nèi)有兩條相交直線分別平行于另一個(gè)平面,那么這兩個(gè)平面平行.(二)創(chuàng)設(shè)情景
師:兩個(gè)平面平行,那么其中一個(gè)平面內(nèi)的直線與另一平面有什么樣的關(guān)系? 生:通過分析可以發(fā)現(xiàn),若平面?和平面?平行,則兩面無公共點(diǎn),那么就意味著平面?內(nèi)任一直線a和平面?也無公共點(diǎn),即直線a和平面?平行。
師:正確,用語言表述就是:如果兩個(gè)平面平行,那么其中一個(gè)平面內(nèi)的直線平行與另一個(gè)平面。用式子可表示為:?//?,a???a//?。
師:兩個(gè)平面平行,那么其中一個(gè)平面內(nèi)的直線與另一平面內(nèi)的直線有何關(guān)系? 生:要么異面,要么平行,因?yàn)樗鼈儫o公共點(diǎn)。師:很好,以上兩個(gè)結(jié)論都可以直接應(yīng)用。
(三)探求新知
師:如圖,設(shè)?//?,????a,????b,我們研究兩條交線的位置關(guān)系。
生:因?yàn)?//?,所以a,b內(nèi)有公共點(diǎn)。而a,b又同在平面?內(nèi),于是有a//b.師:我們把這個(gè)結(jié)論稱為連個(gè)平面平行的性質(zhì)定理。
?//??兩個(gè)平面平行的性質(zhì)定理:如果兩個(gè)平行平面同時(shí)和第三?????a??a//b個(gè)平面相交,那么它們的交線平行。用符號表示為: ????b??2
(四)自主學(xué)習(xí)練習(xí):
1、課本P67練習(xí)
2、課本P67習(xí)題2.2:A組1、2; 學(xué)生獨(dú)立完成,教師進(jìn)行糾正。
(四)歸納整理
(五)布置作業(yè)
課本第69頁習(xí)題2.2 B組第2、3題。