第一篇:一元二次方程單元備課
第二十二章一元二次方程
單元要點分析
教材內(nèi)容
1.本單元教學的主要內(nèi)容.
一元二次方程概念;解一元二次方程的方法;一元二次方程應(yīng)用題.2.本單元在教材中的地位與作用.
一元二次方程是在學習《一元一次方程》、《二元一次方程》、分式方程等基礎(chǔ)之上學習的,它也是一種數(shù)學建模的方法.學好一元二次方程是學好二次函數(shù)不可或缺的,是學好高中數(shù)學的奠基工程.應(yīng)該說,一元二次方程是本書的重點內(nèi)容.
教學目標
1.知識與技能
了解一元二次方程及有關(guān)概念;掌握通過配方法、公式法、因式分解法降次──解一元二次方程;掌握依據(jù)實際問題建立一元二次方程的數(shù)學模型的方法;應(yīng)用熟練掌握以上知識解決問題.2.過程與方法
(1)通過豐富的實例,讓學生合作探討,老師點評分析,建立數(shù)學模型.?根據(jù)數(shù)學模型恰如其分地給出一元二次方程的概念.
(2)結(jié)合八冊上整式中的有關(guān)概念介紹一元二次方程的派生概念,如二次項等.(3)通過掌握缺一次項的一元二次方程的解法──直接開方法,?導(dǎo)入用配方法解一元二次方程,又通過大量的練習鞏固配方法解一元二次方程.(4)通過用已學的配方法解ax2+bx+c=0(a≠0)導(dǎo)出解一元二次方程的求根公式,接著討論求根公式的條件:b2-4ac>0,b2-4ac=0,b2-4ac<0.
(5)通過復(fù)習八年級上冊《整式》的第5節(jié)因式分解進行知識遷移,解決用因式分解法解一元二次方程,并用練習鞏固它.
(6)提出問題、分析問題,建立一元二次方程的數(shù)學模型,?并用該模型解決實際問題.
3.情感、態(tài)度與價值觀
經(jīng)歷由事實問題中抽象出一元二次方程等有關(guān)概念的過程,使同學們體會到通過一元二次方程也是刻畫現(xiàn)實世界中的數(shù)量關(guān)系的一個有效數(shù)學模型;經(jīng)歷用配方法、公式法、分解因式法解一元一次方程的過程,使同學們體會到轉(zhuǎn)化等數(shù)學思想;經(jīng)歷設(shè)置豐富的問題情景,使學生體會到建立數(shù)學模型解決實際問題的過程,從而更好地理解方程的意義和作用,激發(fā)學生的學習興趣.
教學重點
1.一元二次方程及其它有關(guān)的概念.
2.用配方法、公式法、因式分解法降次──解一元二次方程.3.利用實際問題建立一元二次方程的數(shù)學模型,并解決這個問題.
教學難點
1.一元二次方程配方法解題.
2.用公式法解一元二次方程時的討論.
3.建立一元二次方程實際問題的數(shù)學模型;方程解與實際問題解的區(qū)別.
教學關(guān)鍵
1.分析實際問題如何建立一元二次方程的數(shù)學模型.2.用配方法解一元二次方程的步驟.3.解一元二次方程公式法的推導(dǎo).
課時劃分
本單元教學時間約需16課時,具體分配如下:22.1一元二次方程2課時22.2降次──解一元二次方程5課時22.3實際問題與一元二次方程4課時教學活動、習題課、小結(jié)2課時
第二篇:一元二次方程單元備課
第四章 一元二次方程單元備課
單元名稱:一元二次方程
一、本單元的地位和作用
1.本單元教學的主要內(nèi)容.
一元二次方程概念;解一元二次方程的方法;一元二次方程應(yīng)用題.
2.本單元在教材中的地位與作用.
一元二次方程是在學習《一元一次方程》、《二元一次方程》、分式方程等基礎(chǔ)之上學習的,它也是一種數(shù)學建模的方法.學好一元二次方程是學好二次函數(shù)不可或缺的,是學好高中數(shù)學的奠基工程.應(yīng)該說,一元二次方程是本書的重點內(nèi)容.
二、單元教學目標
1.知識與技能
了解一元二次方程及有關(guān)概念;掌握通過配方法、公式法、因式分解法降次──解一元二次方程;掌握依據(jù)實際問題建立一元二次方程的數(shù)學模型的方法;應(yīng)用熟練掌握以上知識解決問題.
2.過程與方法
(1)通過豐富的實例,讓學生合作探討,老師點評分析,建立數(shù)學模型.?根據(jù)數(shù)學模型恰如其分地給出一元二次方程的概念.
(2)結(jié)合八冊上整式中的有關(guān)概念介紹一元二次方程的派生概念,如二次項等.
(3)通過掌握缺一次項的一元二次方程的解法──直接開方法,?導(dǎo)入用配方法解一元二次方程,又通過大量的練習鞏固配方法解一元二次方程.
(4)通過用已學的配方法解ax2+bx+c=0(a≠0)導(dǎo)出解一元二次方程的求根公式,接著討論求根公式的條件:b2-4ac>0,b2-4ac=0,b2-4ac<0.
(5)通過復(fù)習八年級上冊《整式》的第5節(jié)因式分解進行知識遷移,解決用因式分解法解一元二次方程,并用練習鞏固它.
(6)提出問題、分析問題,建立一元二次方程的數(shù)學模型,?并用該模型解決實際問題.
3.情感、態(tài)度與價值觀
經(jīng)歷由事實問題中抽象出一元二次方程等有關(guān)概念的過程,使同學們體會到通過一元二次方程也是刻畫現(xiàn)實世界中的數(shù)量關(guān)系的一個有效數(shù)學模型;經(jīng)歷用配方法、公式法、分解因式法解一元一次方程的過程,使同學們體會到轉(zhuǎn)化等數(shù)學思想;經(jīng)歷設(shè)置豐富的問題情景,使學生體會到建立數(shù)學模型解決實際問題的過程,從而更好地理解方程的意義和作用,激發(fā)學生的學習興趣.
三、單元知識點分析
四、教學與難點 教學重點
1.一元二次方程及其它有關(guān)的概念.
2.用配方法、公式法、因式分解法降次──解一元二次方程.
3.利用實際問題建立一元二次方程的數(shù)學模型,并解決這個問題.
教學難點
1.一元二次方程配方法解題.
2.用公式法解一元二次方程時的討論.
3.建立一元二次方程實際問題的數(shù)學模型;方程解與實際問題解的區(qū)別.
五、教學措施:
1.分析實際問題如何建立一元二次方程的數(shù)學模型.
2.用配方法解一元二次方程的步驟.
3.解一元二次方程公式法的推導(dǎo).
六、課時安排:
本單元教學時間約需14課時,具體分配如下:
一元二次方程
2課時
用配方法解一元二次方程
3課時 用公式法解一元二次方程
2課時 4.用分解因式法解一元二次方程
1課時
5、一元二次方程根的判別式
1課時
6、一元二次方程根與系數(shù)的關(guān)系
1課時
7、一元二次方程的應(yīng)用
2課時
回顧與復(fù)習
2課時
考試與講評
2課時
總計
14課時
第三篇:一元二次方程實際問題
例3.某商店經(jīng)銷一種銷售成本為每千克40元的水產(chǎn)品,?據(jù)市場分析,?若每千克50元銷售,一個月能售出500kg,銷售單價每漲1元,月銷售量就減少10kg,針對這種水產(chǎn)品情況,請解答以下問題:
(1)當銷售單價定為每千克55元時,計算銷售量和月銷售利潤.
(2)設(shè)銷售單價為每千克x元,月銷售利潤為y元,求y與x的關(guān)系式.
(3)商品想在月銷售成本不超過10000元的情況下,使得月銷售利潤達到8000元,銷售單價應(yīng)為多少?
分析:(1)銷售單價定為55元,比原來的銷售價50元提高5元,因此,銷售量就減少5×10kg.
(2)銷售利潤y=(銷售單價x-銷售成本40)×銷售量[500-10(x-50)]
(3)月銷售成本不超過10000元,那么銷售量就不超過10000=250kg,在這個提前下,40
?求月銷售利潤達到8000元,銷售單價應(yīng)為多少.
解:(1)銷售量:500-5×10=450(kg);銷售利潤:450×(55-40)=450×15=6750元
(2)y=(x-40)[500-10(x-50)]=-10x2+1400x-40000
(3)由于水產(chǎn)品不超過10000÷40=250kg,定價為x元,則(x-40)[500-10(x-50)]=8000解得:x1=80,x2=60
當x1=80時,進貨500-10(80-50)=200kg<250kg,滿足題意.
當x2=60時,進貨500-10(60-50)=400kg>250kg,(舍去).
例4.某人將2000元人民幣按一年定期存入銀行,到期后支取1000元用于購物,剩下的1000元及應(yīng)得利息又全部按一年定期存入銀行,若存款的利率不變,到期后本金和利息共1320元,求這種存款方式的年利率.
分析:設(shè)這種存款方式的年利率為x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就變?yōu)?000+2000x·80%,其它依此類推.解:設(shè)這種存款方式的年利率為x
則:1000+2000x·80%+(1000+2000x·8%)x·80%=1320
整理,得:1280x2+800x+1600x=320,即8x2+15x-2=0
解得:x1=-2(不符,舍去),x2=
答:所求的年利率是12.5%.
1=0.125=12.5% 8
第四篇:一元二次方程應(yīng)用2010
1、(2009煙臺市)某商場將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實施,商場決定采取適當?shù)慕祪r措施.調(diào)查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.
(1)假設(shè)每臺冰箱降價x元,商場每天銷售這種冰箱的利潤是y元,請寫出y與x之間的函數(shù)表達式;(不要求寫自變量的取值范圍)
(2)商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實惠,每臺冰箱應(yīng)降價多少元?
2、(2009武漢)某商品的進價為每件40元,售價為每件50元,每個月可賣出210件;如果每件商品的售價每上漲1元,則每個月少賣10件(每件售價不能高于65元).設(shè)每件商品的售價上漲x元(x為正整數(shù)),每個月的銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;
(2)每件商品的售價定為多少元時,每個月的利潤恰為2200元?
3、某果園有100棵橙子樹,每一棵樹平均結(jié)600個橙子.現(xiàn)準備多種一些橙子樹以提高產(chǎn)量,但是如果多種樹,那么樹之間的距離和每一棵樹所接受的陽光就會減少.根據(jù)經(jīng)驗估計,每多種一棵樹,平均每棵樹就會少結(jié)5個橙子.⑴利用函數(shù)表達式描述橙子的總產(chǎn)量與增種橙子樹的棵數(shù)之間的關(guān)系.(2)增種多少棵橙子,可以使橙子的總產(chǎn)量達到60400個?
4、某商店經(jīng)銷一種銷售成本為每千克40元的水產(chǎn)品.據(jù)市場分析,若按每千克50元銷售,一個月能售出500千克;銷售單價每漲1元,月銷售量就減少10千克.針對這種水產(chǎn)品的銷售情況,請售答以下問題:
(1)當銷售單價定為每千克55元時,計算月銷售量和月銷售利潤;
(2)設(shè)銷售單價為每千克x元,月銷售利潤為y元,求y與x函數(shù)關(guān)系式(不必寫出x的取值范圍);(3)商店想在月銷售成本不超過1000元的情況下,使得月銷售利潤達到8000元,銷售單價應(yīng)定為多少?
5、某化工材料經(jīng)銷公司購進了一種化工原料共7000千克,購進價格為每千克30元.物價部門規(guī)定其銷售單價不得高于每千克70元,也不得低于30元.市場調(diào)查發(fā)現(xiàn):單價定為70元時,日均銷售60千克;單價每降低1元,日均多售出2千克.在銷售過程中,每天還要支出其他費用500元(天數(shù)不足一天時,按整天計算).設(shè)銷售單價為x元,日均獲利為y元.求y關(guān)于x的二次函數(shù)關(guān)系式,并注明x的取值范圍;
6、(2009年貴州省黔東南州)凱里市某大型酒店有包房100間,在每天晚餐營業(yè)時間,每間包房收包房費100元時,包房便可全部租出;若每間包房收費提高20元,則減少10間包房租出,若每間包房收費再提高20元,則再減少10間包房租出,以每次提高20元的這種方法變化下去。
(1)設(shè)每間包房收費提高x(元),則每間包房的收入為y1(元),但會減少y2
間包房租出,請分別寫出y1、y2與x之間的函數(shù)關(guān)系式。
(2)為了投資少而利潤大,每間包房提高x(元)后,設(shè)酒店老板每天晚餐包房總收入為y(元),請寫出y與x之間的函數(shù)關(guān)系式。
7、(2009年甘肅慶陽)(8分)某企業(yè)2006年盈利1500萬元,2008年克服全球金融危機的不利影響,仍實現(xiàn)盈利2160萬元.從2006年到2008年,如果該企業(yè)每年盈利的年增長率相同,求:(1)該企業(yè)2007年盈利多少萬元?
(2)若該企業(yè)盈利的年增長率繼續(xù)保持不變,預(yù)計2009年盈利多少萬元?
8、(2009年湖州)隨著人民生活水平的不斷提高,我市家庭轎車的擁有量逐年增加.據(jù)統(tǒng)計,某小區(qū)2006年底擁有家庭轎車64輛,2008年底家庭轎車的擁有量達到100輛.(1)若該小區(qū)2006年底到2009年底家庭轎車擁有量的年平均增長率都相同,求該小區(qū)到2009年底家庭轎車將達到多少輛?
(2)為了緩解停車矛盾,該小區(qū)決定投資15萬元再建造若干個停車位.據(jù)測算,建造費用分別為室內(nèi)車位5000元/個,露天車位1000元/個,考慮到實際因素,計劃露天車位的數(shù)量不少于室內(nèi)車位的2倍,但不超過室內(nèi)車位的2.5倍,求該小區(qū)最多可建兩種車位各多少個?試寫出所有可能的方案.9.建造一個面積是140平方米的倉庫,要求其一邊靠墻,墻長16米,在與墻平行的一邊開一道2米寬的門?,F(xiàn)人32米長的材料來建倉庫,求這個倉庫的長是多少米?
10、如圖在△ABC中,∠B是直角,AB=6厘米,BC=12厘米。點P從A點開始,沿AB方向以每秒1厘米的速度移動,同時點Q從點B開始,沿BC方向以每秒厘米移動。問幾秒時△PBQ的面積等于8平方厘米?
11.(2009年甘肅慶陽)若關(guān)于x的方程x2
?2x?k?1?0的一個根是0,則k?.
12.、(2009威海)若關(guān)于x的一元二次方程x2
?(k?3)x?k?0的一個根是?2,則另一個根是______.、(2009山西省太原市)某種品牌的手機經(jīng)過四、五月份連續(xù)兩次降價,每部售價P 13由3200元降到了2500元.設(shè)平均每月降價的百分率為x,根據(jù)題意列出的方程是.
第五篇:2014最新人教版一元二次方程 簡單
《一元二次方程》單元訓練題
班級:姓名:
一、選擇題(每小題3分,共24分)
1.方程x2=2x-3化為一般形式后二次項系數(shù)、一次項系數(shù)和常數(shù)項分別為()
A. 1、2、-3B.
1、2、-3C.
1、-
2、3D.1、2、3
2.方程(m?2)x2?3mx?1?0是關(guān)于x的一元二次方程,則()
A.m??2B.m?2C.m??2D.m?2
3.一元二次方程x2-4=0的解是()
A.x1=2,x2=-2B.x=-2C.x=2D.x1=2,x2=0
4.用配方法解方程x2-4x=-2,下列配方正確的是()
A.(x-2)2=2B.(x+2)2=2C.(x-2)2=-2D.(x-2)2=6
5.已知一元二次方程x2+x-1=0,下列判斷正確的是()
A.該方程有兩個相等的實數(shù)根B.該方程有兩個不相等的實數(shù)根
C.該方程無實數(shù)根D.該方程根的情況不確定
6.若x1、x2是方程x2?3x?5?0的兩個根,則x1?x2的值為()
22A.?3B.?5C.3D.5 7.如果x=4是一元二次方程x?3x?a的一個根,則常數(shù)a的值是()
A.2B.-2C.±2D.±4
8.為了美化環(huán)境,某市加大對環(huán)境綠化的投資.2009年用于綠化投資20萬元,2011年用于綠化投資25萬元,求這兩年綠化投資的年平均增長率.設(shè)這兩年綠化投資的年平均增長率為x,根據(jù)題意,所列方程為()
A.20x2=25B.20(1+x)=25C.20(1+x)2=25D.20(1+x)+20(1+x)2=25
二、填空題(每小題3分,共21分)
9.一元二次方程x?2x的解為:;
10.已知x=2是關(guān)于x的一元二次方程x2+4x-p=0的一個根,則p的值是_______.
11.已知
3、-5是關(guān)于x的方程x+px+q=0的兩根,則 ,.12.已知x2+x-1=0,則3x2+3x-5=_______.
13.三角形的兩邊長分別為3和4,第三邊的長是方程x?6x?8?0的一個根,則這個三角形的周長是
14.已知代數(shù)式x?2x?3與x?7的值相等,則x的值是.
15.已知方程x-4x+3=0的兩根為x1、x2, 則x1+x2=,x1·x2=,三.解下列方程(每小題5分,共20分)
21.x?9?0;2.3x2?1?6x. 2222211?. x1x
22x4.2x(x?3)?5x(? 33.2x?1?3
四.解答題(共35分)
1.已知x1=-1是方程x2+mx-5=0的一個根,求m的值及方程的另一個根x2.(8分)
4.已知關(guān)于x的一元二次方程x+(m+1)x+m+4=0,當m為何值時,方程有兩個相等的實數(shù)根.(8分)
2.某汽車銷售公司2005年盈利1500萬元,到2007年盈利2160萬元,且從2005年到2007年,每年盈利的年增長率相同.問該公司的年增長率是多少?(8分)
3.商場某種商品平均每天可銷售30件,每件盈利50元.為了盡快減少庫存,商場決定采取適當?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出 2件.
設(shè)每件商品降價x元.據(jù)此規(guī)律,請回答:
(1)商場日銷售量增加件,每件商品盈利元(用含x的代數(shù)式表示);
(2)在上述條件不變、銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2100元?(11分)