第一篇:高中數(shù)學(xué)難點(diǎn)解析教案31 數(shù)學(xué)歸納法解題
高中數(shù)學(xué)輔導(dǎo)網(wǎng)
http://004km.cn>2bn.命題意圖:本題主要考查數(shù)學(xué)歸納法證明不等式,屬★★★★級(jí)題目.知識(shí)依托:等差數(shù)列、等比數(shù)列的性質(zhì)及數(shù)學(xué)歸納法證明不等式的一般步驟.錯(cuò)解分析:應(yīng)分別證明不等式對(duì)等比數(shù)列或等差數(shù)列均成立,不應(yīng)只證明一種情況.技巧與方法:本題中使用到結(jié)論:(ak-ck)(a-c)>0恒成立(a、b、c為正數(shù)),從而ak+1+ck+1>ak·c+ck·a.b證明:(1)設(shè)a、b、c為等比數(shù)列,a=,c=bq(q>0且q≠1)
qbnnnn1∴a+c=n+bq=b(n+qn)>2bn
qqnn
an?cna?cn(2)設(shè)a、b、c為等差數(shù)列,則2b=a+c猜想>()(n≥2且n∈N*)
22下面用數(shù)學(xué)歸納法證明:
a2?c2a?c2?()①當(dāng)n=2時(shí),由2(a+c)>(a+c),∴
22ak?cka?ck?(), ②設(shè)n=k時(shí)成立,即
22ak?1?ck?11?(ak+1+ck+1+ak+1+ck+1)則當(dāng)n=k+1時(shí),2411>(ak+1+ck+1+ak·c+ck·a)=(ak+ck)(a+c)44a?cka?ca?ck+1>()·()=()
2221[例2]在數(shù)列{an}中,a1=1,當(dāng)n≥2時(shí),an,Sn,Sn-成等比數(shù)列.2(1)求a2,a3,a4,并推出an的表達(dá)式;(2)用數(shù)學(xué)歸納法證明所得的結(jié)論;(3)求數(shù)列{an}所有項(xiàng)的和.命題意圖:本題考查了數(shù)列、數(shù)學(xué)歸納法、數(shù)列極限等基礎(chǔ)知識(shí).知識(shí)依托:等比數(shù)列的性質(zhì)及數(shù)學(xué)歸納法的一般步驟.采用的方法是歸納、猜想、證明.1錯(cuò)解分析:(2)中,Sk=-應(yīng)舍去,這一點(diǎn)往往容易被忽視.2k?
3222
京翰教育http://004km.cn/
高中數(shù)學(xué)輔導(dǎo)網(wǎng)
http://004km.cn 技巧與方法:求通項(xiàng)可證明{通項(xiàng)公式.111}是以{}為首項(xiàng),為公差的等差數(shù)列,進(jìn)而求得SnS1211成等比數(shù)列,∴Sn2=an·(Sn-)(n≥2)
(*)222(1)由a1=1,S2=a1+a2=1+a2,代入(*)式得:a2=-
3212由a1=1,a2=-,S3=+a3代入(*)式得:a3=-
3315解:∵an,Sn,Sn-
(n?1)?1 2?同理可得:a4=-,由此可推出:an=? 2?(n?1)35?(2n?3)(2n?1)?(2)①當(dāng)n=1,2,3,4時(shí),由(*)知猜想成立.2②假設(shè)n=k(k≥2)時(shí),ak=-成立
(2k?3)(2k?1)故Sk2=-21·(Sk-)(2k?3)(2k?1)2∴(2k-3)(2k-1)Sk2+2Sk-1=0 11(舍),Sk??2k?12k?311由Sk+12=ak+1·(Sk+1-),得(Sk+ak+1)2=ak+1(ak+1+Sk-)
22∴Sk=
2ak?1ak?11122?a??a??ak?1k?1k?122k?12k?12(2k?1)
?2?ak?1?,即n?k?1命題也成立.[2(k?1)?3][2(k?1)?1]??1(n?1)?由①②知,an=?對(duì)一切n∈N成立.2?(n?2)?(2n?3)(2n?1)?(3)由(2)得數(shù)列前n項(xiàng)和Sn=
1,∴S=limSn=0.n??2n?1●錦囊妙記
(1)數(shù)學(xué)歸納法的基本形式
設(shè)P(n)是關(guān)于自然數(shù)n的命題,若 1°P(n0)成立(奠基)2°假設(shè)P(k)成立(k≥n0),可以推出P(k+1)成立(歸納),則P(n)對(duì)一切大于等于n0的自然數(shù)n都成立.(2)數(shù)學(xué)歸納法的應(yīng)用
具體常用數(shù)學(xué)歸納法證明:恒等式,不等式,數(shù)的整除性,幾何中計(jì)算問(wèn)題,數(shù)列的通項(xiàng)與和等.京翰教育http://004km.cn/
高中數(shù)學(xué)輔導(dǎo)網(wǎng)
http://004km.cn ●殲滅難點(diǎn)訓(xùn)練
一、選擇題
1.(★★★★★)已知f(n)=(2n+7)·3n+9,存在自然數(shù)m,使得對(duì)任意n∈N,都能使m整除f(n),則最大的m的值為()A.30
B.26
C.36
D.6 2.(★★★★)用數(shù)學(xué)歸納法證明3k≥n3(n≥3,n∈N)第一步應(yīng)驗(yàn)證()A.n=1
B.n=2
C.n=3
D.n=4
二、填空題
1311511173.(★★★★★)觀察下列式子:1??,1?2?2?,1?2?2?2?…則可歸
223423234納出_________.4.(★★★★)已知a1=an=_________.三、解答題
5.(★★★★)用數(shù)學(xué)歸納法證明42n?1+3n+2能被13整除,其中n∈N*.6.(★★★★)若n為大于1的自然數(shù),求證:
3an1,an+1=,則a2,a3,a4,a5的值分別為_(kāi)________,由此猜想
an?3211113.?????n?1n?22n247.(★★★★★)已知數(shù)列{bn}是等差數(shù)列,b1=1,b1+b2+…+b10=145.(1)求數(shù)列{bn}的通項(xiàng)公式bn;(2)設(shè)數(shù)列{an}的通項(xiàng)an=loga(1+
1)(其中a>0且a≠1)記Sn是數(shù)列{an}的前n項(xiàng)和,試bn比較Sn與1logabn+1的大小,并證明你的結(jié)論.38.(★★★★★)設(shè)實(shí)數(shù)q滿足|q|<1,數(shù)列{an}滿足:a1=2,a2≠0,an·an+1=-qn,求an表達(dá)式,又如果limS2n<3,求q的取值范圍.n??
參考答案
難點(diǎn)磁場(chǎng)
1?4?(a?b?c)?6?a?3?1????b?11 解:假設(shè)存在a、b、c使題設(shè)的等式成立,這時(shí)令n=1,2,3,有?22?(4a?2b?c)2??c?10?70?9a?3b?c???于是,對(duì)n=1,2,3下面等式成立 1·22+2·32+…+n(n+1)2=
n(n?1)(3n2?11n?10)12記Sn=1·22+2·32+…+n(n+1)2
京翰教育http://004km.cn/
高中數(shù)學(xué)輔導(dǎo)網(wǎng)
http://004km.cn
k(k?1)(3k2+11k+10)12k(k?1)那么Sk+1=Sk+(k+1)(k+2)2=(k+2)(3k+5)+(k+1)(k+2)2
2(k?1)(k?2)=(3k2+5k+12k+24)12(k?1)(k?2)=[3(k+1)2+11(k+1)+10]
12設(shè)n=k時(shí)上式成立,即Sk=也就是說(shuō),等式對(duì)n=k+1也成立.綜上所述,當(dāng)a=3,b=11,c=10時(shí),題設(shè)對(duì)一切自然數(shù)n均成立.殲滅難點(diǎn)訓(xùn)練
一、1.解析:∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36 ∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除.證明:n=1,2時(shí),由上得證,設(shè)n=k(k≥2)時(shí),f(k)=(2k+7)·3k+9能被36整除,則n=k+1時(shí),f(k+1)-f(k)=(2k+9)·3k+1-(2k+7)·3k =(6k+27)·3k-(2k+7)·3k
-=(4k+20)·3k=36(k+5)·3k2(k≥2)?f(k+1)能被36整除
∵f(1)不能被大于36的數(shù)整除,∴所求最大的m值等于36.答案:C 2.解析:由題意知n≥3,∴應(yīng)驗(yàn)證n=3.答案:C
二、3.解析:1?1312?1?1?即1??
1?1222(1?1)21?115112?2?1??,即1???
2?122323(1?1)2(2?1)21112n?1?????(n∈N*)222n?123(n?1)歸納為1?答案:1?1112n?1*?????(n∈N)222n?123(n?1)13a12?3?3同理,4.解析:a2??a1?3172?5?3 23a23333333a3???,a4??,a5??,猜想an?a2?383?594?5105?5n?53?33333 答案:、、、78910n?
5三、5.證明:(1)當(dāng)n=1時(shí),42
×1+1
+31+2=91能被13整除
京翰教育http://004km.cn/
高中數(shù)學(xué)輔導(dǎo)網(wǎng)
http://004km.cn(2)假設(shè)當(dāng)n=k時(shí),42k+1+3k+2能被13整除,則當(dāng)n=k+1時(shí),42(k+1)+1+3k+3=42k+1·42+3k+2·3-42k+1·3+42k+1·3 =42k+1·13+3·(42k+1+3k+2)∵42k+1·13能被13整除,42k+1+3k+2能被13整除 ∴當(dāng)n=k+1時(shí)也成立.由①②知,當(dāng)n∈N*時(shí),42n+1+3n+2能被13整除.11713 ???2?12?2122411113(2)假設(shè)當(dāng)n=k時(shí)成立,即 ?????k?1k?22k241111111則當(dāng)n?k?1時(shí),????????k?2k?32k2k?12k?2k?1k?1131111311??????? 242k?12k?2k?1242k?12k?213113???242(2k?1)(k?1)246.證明:(1)當(dāng)n=2時(shí),?b1?1?b1?1??7.(1)解:設(shè)數(shù)列{bn}的公差為d,由題意得?,∴bn=3n-2 ?10(10?1)d?310b?d?145?1?2?(2)證明:由bn=3n-2知
11)+…+loga(1+)43n?211=loga[(1+1)(1+)…(1+)]
43n?2111而logabn+1=loga33n?1,于是,比較Sn與logabn+1的大小?比較(1+1)(1+)…3341(1+)與33n?1的大小.3n?2Sn=loga(1+1)+loga(1+取n=1,有(1+1)=38?34?33?1?1 取n=2,有(1+1)(1+)?38?37?33?2?1 推測(cè):(1+1)(1+
1411)…(1+)>33n?1(*)43n?2①當(dāng)n=1時(shí),已驗(yàn)證(*)式成立.11)…(1+)>33k?1 43k?21111)(1?)?33k?1(1?)則當(dāng)n=k+1時(shí),(1?1)(1?)?(1?43k?23(k?1)?23k?1②假設(shè)n=k(k≥1)時(shí)(*)式成立,即(1+1)(1+?3k?233k?1
3k?1京翰教育http://004km.cn/
高中數(shù)學(xué)輔導(dǎo)網(wǎng)
http://004km.cn ?(3k?233k?1)3?(33k?4)33k?1(3k?2)3?(3k?4)(3k?1)29k?4???0
(3k?1)2(3k?1)23?3k?1(3k?2)?33k?4?33(k?1)?13k?1111從而(1?1)(1?)?(1?)(1?)?33(k?1)?1,即當(dāng)n=k+1時(shí),(*)式成立
43k?23k?1由①②知,(*)式對(duì)任意正整數(shù)n都成立.于是,當(dāng)a>1時(shí),Sn>
11logabn+1,當(dāng) 0<a<1時(shí),Sn<logabn+1 338.解:∵a1·a2=-q,a1=2,a2≠0, ∴q≠0,a2=-9, 2an1?,即an+2=q·an an?2q∵an·an+1=-qn,an+1·an+2=-qn+1 兩式相除,得于是,a1=2,a3=2·q,a5=2·qn…猜想:a2n+1=-
1n
q(n=1,2,3,…)2?2?qk?1 n?2k?1時(shí)(k?N)?綜合①②,猜想通項(xiàng)公式為an=?1k
??q n?2k時(shí)(k?N)?2下證:(1)當(dāng)n=1,2時(shí)猜想成立
-(2)設(shè)n=2k-1時(shí),a2k-1=2·qk1則n=2k+1時(shí),由于a2k+1=q·a2k-1 ∴a2k+1=2·qk即n=2k-1成立.可推知n=2k+1也成立.設(shè)n=2k時(shí),a2k=-所以a2k+2=-1k
q,則n=2k+2時(shí),由于a2k+2=q·a2k, 21kq+1,這說(shuō)明n=2k成立,可推知n=2k+2也成立.2綜上所述,對(duì)一切自然數(shù)n,猜想都成立.?2?qk?1 當(dāng)n?2k?1時(shí)(k?N)?這樣所求通項(xiàng)公式為an=?1k
當(dāng)n?2k時(shí)(k?N)??q ?2S2n=(a1+a3…+a2n-1)+(a2+a4+…+a2n)=2(1+q+q2+…+qn-1)-(q+q2+…+qn)22(1?qn)1q(1?qn)1?qn4?q????()()
1?q2(1?q)1?q2京翰教育http://004km.cn/
高中數(shù)學(xué)輔導(dǎo)網(wǎng)
http://004km.cn
1?qn4?q)()由于|q|<1,∴l(xiāng)imq?0,故limS2n=(n??n??1?q2n依題意知
4?q2<3,并注意1-q>0,|q|<1解得-1<q<0或0<q<
2(1?q)5京翰教育http://004km.cn/
第二篇:高中數(shù)學(xué) 解題規(guī)范
語(yǔ)言(包括數(shù)學(xué)語(yǔ)言)敘述是表達(dá)解題思路的過(guò)程,是數(shù)學(xué)解題的重要環(huán)節(jié)。因此,語(yǔ)言敘述必須規(guī)范。規(guī)范的語(yǔ)言敘述應(yīng)步驟清楚、正確、完整、詳略得當(dāng),言必有據(jù)。數(shù)學(xué)本身有一套規(guī)范的語(yǔ)言系統(tǒng),切不可隨意杜撰數(shù)學(xué)符號(hào)和數(shù)學(xué)術(shù)語(yǔ),讓人不知所云。
答案規(guī)范是指答案準(zhǔn)確、簡(jiǎn)潔、全面,既注意結(jié)果的驗(yàn)證、取舍,又要注意答案的完整。要做到答案規(guī)范,就必須審清題目的目標(biāo),按目標(biāo)作答。解答數(shù)學(xué)問(wèn)題是有嚴(yán)格的格式化要求的。哪一類(lèi)題型該用什么格式答題,教材上是有明確規(guī)定的,高考命題給出的標(biāo)準(zhǔn)答案是按照教材上的規(guī)定解答的,不符合要求的要扣分。
應(yīng)用問(wèn)題,解出結(jié)果之后要標(biāo)明單位,要寫(xiě)出結(jié)論性的答案,要有一個(gè)專門(mén)的作答過(guò)程.
利用數(shù)學(xué)歸納法證明數(shù)學(xué)問(wèn)題,完成n=n0和n=k到n=k+1的證明之后,要有一個(gè)結(jié)論性的表述:由1°,2°可知,命題對(duì)從0n開(kāi)始的所有正整數(shù)都成立.凡是解不等式問(wèn)題,其結(jié)果一定要寫(xiě)成解集的形式.求函數(shù)y= f(x)的定義域和值域:函數(shù)y= f(x)的定義域是自變量x取值的全體構(gòu)成的集合;函數(shù)y= f(x)的值域是函數(shù)值y的全體構(gòu)成的集合.求函數(shù)y= f(x)的單調(diào)區(qū)間問(wèn)題.如:函數(shù)f(x)=1/(x-1)的單調(diào)區(qū)間--------(?∞,1)和(1, +∞).1.解與解集:方程的結(jié)果一般用解表示(除非強(qiáng)調(diào)求解集);不等式、三角方程的結(jié)果一般用解集(集合或區(qū)間)表示,三角方程的通解中必須加k∈Z。在寫(xiě)區(qū)間或集合時(shí),要正確地書(shū)寫(xiě)圓括號(hào)、方括號(hào)或花括號(hào),區(qū)間的兩端點(diǎn)之間、集合的元素之間用逗號(hào)隔開(kāi)。
2.帶單位的計(jì)算題或應(yīng)用題,最后結(jié)果必須帶單位,特別是應(yīng)用題解題結(jié)束后一定要寫(xiě)符合題意的“解答”。
3.分類(lèi)討論題,一般要寫(xiě)綜合性結(jié)論。
4.任何計(jì)算結(jié)果要最簡(jiǎn)。
5.排列組合題,無(wú)特別聲明,要求出數(shù)值。
6.函數(shù)問(wèn)題一般要注明定義域。
7.參數(shù)方程化普通方程,要考慮消參數(shù)過(guò)程中最后的限制范圍。
8.軌跡問(wèn)題
①注意軌跡與軌跡方程的區(qū)別。軌跡方程一般用普通方程表示,軌跡需要說(shuō)明圖形情況。
②有限制條件的必須注明軌跡中圖形的范圍或軌跡方程中x或y的范圍。
9.分?jǐn)?shù)線要?jiǎng)潤(rùn)M線,不用斜線。
第三篇:高中數(shù)學(xué)學(xué)法心得
高中數(shù)學(xué)學(xué)法心得
瀘溪一中 楊峰
進(jìn)入高中以后,往往有不少同學(xué)不能適應(yīng)數(shù)學(xué)學(xué)習(xí),進(jìn)而影響到學(xué)習(xí)的積極性,甚至成績(jī)一落千丈。出現(xiàn)這樣的情況,原因很多。但主要是由于學(xué)生不了解高中數(shù)學(xué)教學(xué)內(nèi)容特點(diǎn)與自身學(xué)習(xí)方法有問(wèn)題等因素所造成的。在此結(jié)合高中數(shù)學(xué)教學(xué)內(nèi)容的特點(diǎn),談一下高中數(shù)學(xué)學(xué)習(xí)方法,供同學(xué)參考。
一、高中數(shù)學(xué)與初中數(shù)學(xué)特點(diǎn)的變化
1、數(shù)學(xué)語(yǔ)言在抽象程度上突變
初、高中的數(shù)學(xué)語(yǔ)言有著顯著的區(qū)別。初中的數(shù)學(xué)主要是以形象、通俗的語(yǔ)言方式進(jìn)行表達(dá)。而高一數(shù)學(xué)一下子就觸及非常抽象的集合語(yǔ)言、邏輯運(yùn)算語(yǔ)言、函數(shù)語(yǔ)言、圖象語(yǔ)言等。
2、思維方法向理性層次躍遷
高一學(xué)生產(chǎn)生數(shù)學(xué)學(xué)習(xí)障礙的另一個(gè)原因是高中數(shù)學(xué)思維方法與初中階段大不相同。初中階段,很多老師為學(xué)生將各種題建立了統(tǒng)一的思維模式,如解分式方程分幾步,因式分解先看什么,再看什么等。因此,初中學(xué)習(xí)中習(xí)慣于這種機(jī)械的,便于操作的定勢(shì)方式,而高中數(shù)學(xué)在思維形式上產(chǎn)生了很大的變化,數(shù)學(xué)語(yǔ)言的抽象化對(duì)思維能力提出了高要求。這種能力要求的突變使很多高一新生感到不適應(yīng),故而導(dǎo)致成績(jī)下降。
3、知識(shí)內(nèi)容的整體數(shù)量劇增
高中數(shù)學(xué)與初中數(shù)學(xué)又一個(gè)明顯的不同是知識(shí)內(nèi)容的“量”上急劇增加了,單位時(shí)間內(nèi)接受知識(shí)信息的量與初中相比增加了許多,輔助練習(xí)、消化的課時(shí)相應(yīng)地減少了。
4、知識(shí)的獨(dú)立性大
初中知識(shí)的系統(tǒng)性是較嚴(yán)謹(jǐn)?shù)?,給我們學(xué)習(xí)帶來(lái)了很大的方便。因?yàn)樗阌谟洃?,又適合于知識(shí)的提取和使用。但高中的數(shù)學(xué)卻不同了,它是由幾塊相對(duì)獨(dú)立的知識(shí)拼合而成(如集合,命題、不等式、函數(shù)的性質(zhì)、指數(shù)和對(duì)數(shù)函數(shù)、指數(shù)和對(duì)數(shù)方程、三角函數(shù)、數(shù)列等),經(jīng)常是一個(gè)知識(shí)點(diǎn)剛學(xué)得有點(diǎn)入門(mén),馬上又有新的知識(shí)出現(xiàn)。因此,注意它們內(nèi)部的小系統(tǒng)和各系統(tǒng)之間的聯(lián)系成了學(xué)習(xí)時(shí)必須花力氣的著力點(diǎn)。
二、如何學(xué)好高中數(shù)學(xué)
1、養(yǎng)成良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣。
建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會(huì)使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動(dòng)手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過(guò)程中,要把教師所傳授的知識(shí)翻譯成為自己的特殊語(yǔ)言,并永久記憶在自己的腦海中。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣包括課前自學(xué)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面。
2、及時(shí)了解、掌握常用的數(shù)學(xué)思想和方法
學(xué)好高中數(shù)學(xué),需要我們從數(shù)學(xué)思想與方法高度來(lái)掌握它。中學(xué)數(shù)學(xué)學(xué)習(xí)要重點(diǎn)掌握的的數(shù)學(xué)思想有以上幾個(gè):集合與對(duì)應(yīng)思想,分類(lèi)討論思想,數(shù)形結(jié)合思想,運(yùn)動(dòng)思想,轉(zhuǎn)化思想,變換思想。有了數(shù)學(xué)思想以后,還要掌握具體的方法,比如:換元、待定系數(shù)、數(shù)學(xué)歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實(shí)驗(yàn),聯(lián)想與類(lèi)比,比較與分類(lèi),分析與綜合,歸納與演繹,一般與特殊,有限與無(wú)限,抽象與概括等。解數(shù)學(xué)題時(shí),也要注意解題思維策略問(wèn)題,經(jīng)常要思考:選擇什么角度來(lái)進(jìn)入,應(yīng)遵循什么原則性的東西。高中數(shù)學(xué)中經(jīng)常用到的數(shù)學(xué)思維策略有:以簡(jiǎn)馭繁、數(shù)形結(jié)合、進(jìn)退互用、化生為熟、正難則反、倒順相還、動(dòng)靜轉(zhuǎn)換、分合相輔等。
3、逐步形成 “以我為主”的學(xué)習(xí)模式
數(shù)學(xué)不是*老師教會(huì)的,而是在老師的引導(dǎo)下,*自己主動(dòng)的思維活動(dòng)去獲取的。學(xué)習(xí)數(shù)學(xué)就要積極主動(dòng)地參與學(xué)習(xí)過(guò)程,養(yǎng)成實(shí)事求是的科學(xué)態(tài)度,獨(dú)立思考、勇于探索的創(chuàng)新精神;正確對(duì)待學(xué)習(xí)中的困難和挫折,敗不餒,勝不驕,養(yǎng)成積極進(jìn)取,不屈不撓,耐挫折的優(yōu)良心理品質(zhì);在學(xué)習(xí)過(guò)程中,要遵循認(rèn)識(shí)規(guī)律,善于開(kāi)動(dòng)腦筋,積極主動(dòng)去發(fā)現(xiàn)問(wèn)題,注重新舊知識(shí)間的內(nèi)在聯(lián)系,不滿足于現(xiàn)成的思路和結(jié)論,經(jīng)常進(jìn)行一題多解,一題多變,從多側(cè)面、多角度思考問(wèn)題,挖掘問(wèn)題的實(shí)質(zhì)。學(xué)習(xí)數(shù)學(xué)一定要講究“活”,只看書(shū)不做題不行,只埋頭做題不總結(jié)積累也不行。對(duì)課本知識(shí)既要能鉆進(jìn)去,又要能跳出來(lái),結(jié)合自身特點(diǎn),尋找最佳學(xué)習(xí)方法。
三、提高成績(jī)的具體的措施有哪些?
(1)記數(shù)學(xué)筆記,特別是對(duì)概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,教師在課堂中拓展的課外知識(shí)。記錄下來(lái)本章你覺(jué)得最有價(jià)值的思想方法或例題,以及你還存在的未解決的問(wèn)題,以便今后將其補(bǔ)上。
(2)建立數(shù)學(xué)糾錯(cuò)本。把平時(shí)容易出現(xiàn)錯(cuò)誤的知識(shí)或推理記載下來(lái),以防再犯。爭(zhēng)取做到:找錯(cuò)、析錯(cuò)、改錯(cuò)、防錯(cuò)。達(dá)到:能從反面入手深入理解正確東西;能由果朔因把錯(cuò)誤原因弄個(gè)水落石出、以便對(duì)癥下藥;解答問(wèn)題完整、推理嚴(yán)密。
(3)熟記一些數(shù)學(xué)規(guī)律和數(shù)學(xué)小結(jié)論,使自己平時(shí)的運(yùn)算技能達(dá)到了自動(dòng)化或半自動(dòng)化的熟練程度。
(4)經(jīng)常對(duì)知識(shí)結(jié)構(gòu)進(jìn)行梳理,形成板塊結(jié)構(gòu),實(shí)行“整體集裝”,如表格化,使知識(shí)結(jié)構(gòu)一目了然;經(jīng)常對(duì)習(xí)題進(jìn)行類(lèi)化,由一例到一類(lèi),由一類(lèi)到多類(lèi),由多類(lèi)到統(tǒng)一;使幾類(lèi)問(wèn)題歸納于同一知識(shí)方法。
(5)閱讀數(shù)學(xué)課外書(shū)籍與報(bào)刊,參加數(shù)學(xué)學(xué)科課外活動(dòng)與講座,多做數(shù)學(xué)課外題,加大自學(xué)力度,拓展自己的知識(shí)面。
(6)及時(shí)復(fù)習(xí),強(qiáng)化對(duì)基本概念知識(shí)體系的理解與記憶,進(jìn)行適當(dāng)?shù)姆磸?fù)鞏固,消滅前學(xué)后忘。
(7)學(xué)會(huì)從多角度、多層次地進(jìn)行總結(jié)歸類(lèi)。如:①?gòu)臄?shù)學(xué)思想分類(lèi)②從解題方法歸類(lèi)③從知識(shí)應(yīng)用上分類(lèi)等,使所學(xué)的知識(shí)系統(tǒng)化、條理化、專題化、網(wǎng)絡(luò)化。
(8)經(jīng)常在做題后進(jìn)行一定的“反思”,思考一下本題所用的基礎(chǔ)知識(shí),數(shù)學(xué)思想方法是什么,為什么要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問(wèn)題時(shí),是否也用到過(guò)。
(9)無(wú)論是作業(yè)還是測(cè)驗(yàn),都應(yīng)把準(zhǔn)確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,這是學(xué)好數(shù)學(xué)的重要問(wèn)題。
四、要上好每一節(jié)課
數(shù)學(xué)課有知識(shí)的發(fā)生和形成的概念課,有解題思路探索和規(guī)律總結(jié)的習(xí)題課,有數(shù)學(xué)思想方法提煉和聯(lián)系實(shí)際的復(fù)習(xí)課。要上好這些課來(lái)學(xué)會(huì)數(shù)學(xué)知識(shí),掌握學(xué)習(xí)數(shù)學(xué)的方法。
1、概念課要重視教學(xué)過(guò)程,要積極體驗(yàn)知識(shí)產(chǎn)生、發(fā)展的過(guò)程,要把知識(shí)的來(lái)龍去脈搞清楚,認(rèn)識(shí)知識(shí)發(fā)生的過(guò)程,理解公式、定理、法則的推導(dǎo)過(guò)程,改變死記硬背的方法,這樣我們就能從知識(shí)形成、發(fā)展過(guò)程當(dāng)中,理解到學(xué)會(huì)它的樂(lè)趣;在解決問(wèn)題的過(guò)程中,體會(huì)到成功的喜悅。
2、習(xí)題課要掌握“聽(tīng)一遍不如看一遍,看一遍不如做一遍,做一遍不如講一遍,講一遍不如辯一辯”的訣竅。除了聽(tīng)老師講,看老師做以外,要自己多做習(xí)題,而且要把自己的體會(huì)主動(dòng)、大膽地講給大家聽(tīng),遇到問(wèn)題要和同學(xué)、老師辯一辯,堅(jiān)持真理,改正錯(cuò)誤。在聽(tīng)課時(shí)要注意老師展示的解題思維過(guò)程,要多思考、多探究、多嘗試,發(fā)現(xiàn)創(chuàng)造性的證法及解法,學(xué)會(huì)“小題大做”和“大題小做”的解題方法,即對(duì)選擇題、填空題一類(lèi)的客觀題要認(rèn)真對(duì)待絕不粗心大意,就像對(duì)待大題目一樣,做到下筆如有神;對(duì)綜合題這樣的大題目不妨把“大”拆“小”,以“退”為“進(jìn)”,也就是把一個(gè)比較復(fù)雜的問(wèn)題,拆成或退為最簡(jiǎn)單、最原始的問(wèn)題,把這些小題、簡(jiǎn)單問(wèn)題想通、想透,找出規(guī)律,然后再來(lái)一個(gè)飛躍,進(jìn)一步升華,就能湊成一個(gè)大題,即退中求進(jìn)了。如果有了這種分解、綜合的能力,加上有扎實(shí)的基本功還有什么題目難得倒我們。
3、復(fù)習(xí)課在數(shù)學(xué)學(xué)習(xí)過(guò)程中,要有一個(gè)清醒的復(fù)習(xí)意識(shí),逐漸養(yǎng)成良好的復(fù)習(xí)習(xí)慣,從而逐步學(xué)會(huì)學(xué)習(xí)。數(shù)學(xué)復(fù)習(xí)應(yīng)是一個(gè)反思性學(xué)習(xí)過(guò)程。要反思對(duì)所學(xué)習(xí)的知識(shí)、技能有沒(méi)有達(dá)到課程所要求的程度;要反思學(xué)習(xí)中涉及到了哪些數(shù)學(xué)思想方法,這些數(shù)學(xué)思想方法是如何運(yùn)用的,運(yùn)用過(guò)程中有什么特點(diǎn);要反思基本問(wèn)題(包括基本圖形、圖像等),典型問(wèn)題有沒(méi)有真正弄懂弄通了,平時(shí)碰到的問(wèn)題中有哪些問(wèn)題可歸結(jié)為這些基本問(wèn)題;要反思自己的錯(cuò)誤,找出產(chǎn)生錯(cuò)誤的原因,訂出改正的措施。在新學(xué)期大家準(zhǔn)備一本數(shù)學(xué)學(xué)習(xí)“病例卡”,把平時(shí)犯的錯(cuò)誤記下來(lái),找出“病因”開(kāi)出“處方”,并且經(jīng)常拿出來(lái)看看、想想錯(cuò)在哪里,為什么會(huì)錯(cuò),怎么改正,通過(guò)你的努力,到高考時(shí)你的數(shù)學(xué)就沒(méi)有什么“病例”了。并且數(shù)學(xué)復(fù)習(xí)應(yīng)在數(shù)學(xué)知識(shí)的運(yùn)用過(guò)程中進(jìn)行,通過(guò)運(yùn)用,達(dá)到深化理解、發(fā)展能力的目的,因此在新的一年要在教師的指導(dǎo)下做一定數(shù)量的數(shù)學(xué)習(xí)題,做到舉一反
三、熟練應(yīng)用,避免以“練”代“復(fù)”的題海戰(zhàn)術(shù)。
第四篇:教案-設(shè)數(shù)解題法
君子欲訥于言而敏于行
敏行教育-設(shè)數(shù)法解題
一、知識(shí)要點(diǎn)
在競(jìng)賽中,常常會(huì)遇到一些看起來(lái)缺少條件的題目,按常規(guī)解法似乎無(wú)解,但仔細(xì)分析就會(huì)發(fā)現(xiàn),題目中缺少的條件對(duì)于答案并無(wú)影響,這時(shí)就可以采用“設(shè)數(shù)代入法”,即對(duì)題目中“缺少”的條件,隨便假設(shè)一個(gè)數(shù)代入(當(dāng)然假設(shè)的這個(gè)數(shù)要盡量的方便計(jì)算),然后求出解答。
二、精講精練
【例題1】如果△△=□□□,△☆=□□□□,那么☆☆□=()個(gè)△?!窘馕觥?由第一個(gè)等式可以設(shè)△=3,□=2,代入第二式得☆=5,再代入第三式左邊是12,所以右邊括號(hào)內(nèi)應(yīng)填4。
練習(xí)1:已知△=□□,△○=□□,☆=□□□,問(wèn)△□☆=()個(gè)○。
【例題2】足球門(mén)票15元一張,降價(jià)后觀眾增加一倍,收入增加1/5,問(wèn)一張門(mén)票降價(jià)多少元?
【解析】初看似乎缺少觀眾人數(shù)這個(gè)條件,實(shí)際上觀眾人數(shù)于答案無(wú)關(guān),我們可以隨便假設(shè)一個(gè)觀眾數(shù)。為了方便,假設(shè)原來(lái)只有一個(gè)觀眾,收入為15元,那么降價(jià)后有兩個(gè)觀眾,收入為15×(1+1/5)=18元,則降價(jià)后每張票價(jià)為18÷2=9元,每張票降價(jià)15-9=6元。即:
15-15×(1+1/5)÷2=6(元)答:每張票降價(jià)6元。
說(shuō)明:如果設(shè)原來(lái)有a名觀眾,則每張票降價(jià): 15-15a×(1+1/5)÷2a=6(元)
練習(xí)2:某班一次考試,平均分為70分,其中3/4及格,及格的同學(xué)平均分為80分,那么不及格的同學(xué)平均分是多少分?
君子欲訥于言而敏于行
【例題3】小王在一個(gè)小山坡來(lái)回運(yùn)動(dòng)。先從山下跑上山,每分鐘跑200米,再?gòu)脑废律?,每分鐘?40米,又從原路上山,每分鐘跑150米,再?gòu)脑废律?,每分鐘?00米,求小王的平均速度。
【解析】題中四個(gè)速度的最小公倍數(shù)是1200,設(shè)一個(gè)單程是1200米。則(1)四個(gè)單程的和:1200×4=4800(米)(2)四個(gè)單程的時(shí)間分別是;
1200÷200=6(分)
1200÷240=5(分)1200÷200=6(分)1200÷150=8(分)
(3)小王的平均速度為:4800÷(6+5+8+6)=192(米)
練習(xí)3:小華上山的速度是每小時(shí)3千米,下山的速度是每小時(shí)6千米,求上山后又沿原路下山的平均速度。
【例題4】某幼兒園中班的小朋友平均身高115厘米,其中男孩比女孩多1/5,女孩平均身高比男孩高10%,這個(gè)班男孩平均身高是多少?
【解析】題中沒(méi)有男、女孩的人數(shù),我們可以假設(shè)女孩有5人,則男孩有6人。(1)總身高:115×【5+5×(1+1/5)】=1265(厘米)
(2)由于女孩平均身高是男孩的(1+10%),所以5個(gè)女孩的身高相當(dāng)于5×(1+10%)=5.5個(gè)男孩的身高,因此男孩的平均身高為:
1265÷【(1+10%)×5+6】=110(厘米)
練習(xí)4:某班男生人數(shù)是女生的2/3,男生平均身高為138厘米,全班平均身高為132厘米。問(wèn):女生平均身高是多少厘米?
【例題5】狗跑5步的時(shí)間馬跑3步,馬跑4步的距離狗跑7步,現(xiàn)在狗已跑出30米,馬開(kāi)始追它。問(wèn)狗再跑多遠(yuǎn),馬可以追到它?
【解析】馬跑一步的距離不知道,跑3步的時(shí)間也不知道,可取具體數(shù)值,并不影響解題結(jié)果。
設(shè)馬跑一步為7,則狗跑一步為4,再設(shè)馬跑3步的時(shí)間為1,則狗跑5步的時(shí)間為1,推知狗的速度為20,馬的速度為21。那么,20×【30÷(21-20)】=600(米)
君子欲訥于言而敏于行
練習(xí)5:獵狗前面26步遠(yuǎn)的地方有一野兔,獵狗追之。兔跑8步的時(shí)間狗只跑5步,但兔跑9步的距離僅等于狗跑4步的距離。問(wèn)兔跑幾步后,被狗抓獲?
課后作業(yè):
周天練習(xí):
1.五個(gè)人比較身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲與戊誰(shuí)高,高幾厘米?
2.甲、乙、丙三個(gè)倉(cāng)庫(kù)原有同樣多的貨,從甲倉(cāng)庫(kù)運(yùn)60噸到乙倉(cāng)庫(kù),從乙倉(cāng)庫(kù)運(yùn)45噸到丙倉(cāng)庫(kù),從丙倉(cāng)庫(kù)運(yùn)55噸到甲倉(cāng)庫(kù),這時(shí)三個(gè)倉(cāng)庫(kù)的貨哪個(gè)最多?哪個(gè)最少?最多的比最少的多多少噸?
周一練習(xí):
1.游泳池里參加游泳的學(xué)生中,小學(xué)生占30%,又來(lái)了一批學(xué)生后,學(xué)生總數(shù)增加了20%,小學(xué)生占學(xué)生總數(shù)的40%,小學(xué)生增加百分之幾?
2.五年級(jí)三個(gè)班的人數(shù)相等。一班的男生人數(shù)和二班的女生人數(shù)相等,三班的男生是全部男生的2/5,全部女生人數(shù)占全年級(jí)人數(shù)的幾分之幾?
周二練習(xí):
君子欲訥于言而敏于行
1.張師傅騎自行車(chē)往返A(chǔ)、B兩地。去時(shí)每小時(shí)行15千米,返回時(shí)因逆風(fēng),每小時(shí)只行10千米,張師傅往返途中的平均速度是每小時(shí)多少千米?
2.小王騎摩托車(chē)往返A(chǔ)、B兩地。平均速度為每小時(shí)48千米,如果他去時(shí)每小時(shí)行42千米,那么他返回時(shí)的平均速度是每小時(shí)行多少千米?
周三練習(xí):
1.某班男生人數(shù)是女生的4/5,女生的平均身高比男生高15%,全班的平均身高是130厘米,求男、女生的平均身高各是多少?
2.一個(gè)長(zhǎng)方形每邊增加10%,那么它的周長(zhǎng)增加百分之幾?它的面積增加百分之幾?
周四練習(xí):
1.獵人帶獵狗去捕獵,發(fā)現(xiàn)兔子剛跑出40米,獵狗去追兔子。已知獵狗跑2步的時(shí)間兔子跑3步,獵狗跑4步的距離與兔子跑7步的距離相等,求兔再跑多遠(yuǎn),獵狗可以追到它?
2.狗和兔同時(shí)從A地跑向B地,狗跑3步的距離等于兔跑5步的距離,而狗跑2步的時(shí)間等于兔跑3步的時(shí)間,狗跑600步到達(dá)B地,這時(shí)兔還要跑多少步才能到達(dá)B地?
第五篇:難點(diǎn)解析
難點(diǎn)解析:
1.comfortable(adj)舒適的,安逸的 more ~
/
most ~ a comfortable bed 一張舒適的床 a comfortable job 一份輕松的工作 反 uncomfortable不舒服的
eg: It has the most comfortable seats.2.close ⑴(adj)近的,接近的closer---closest 反義詞為far近義詞為near
(be)close to =next to / near to….離…近
The post office is close to my home.The radio station is closer to my home.The park is the closest to my home.Please keep the window closed.⑵(v)關(guān),關(guān)閉,反義詞為open close the door / window 3.n.+ly=adj.love—lovely live—lively lone—lonely friend—friendly be friendly to sb.= be kind to sb.“對(duì)某人好” 4.形容詞的比較級(jí)和最高級(jí)
A.大多數(shù)形容詞有三個(gè)級(jí)。
(1)原級(jí): 常用結(jié)構(gòu)as...as...像..……一樣
Zhang Hong is as tall as Tom.Tom runs as fast as Jack.not as/so + adj /adv的原級(jí)+as 不如/不及..…(2)比較級(jí)(用于兩者之間的比較)
常用結(jié)構(gòu):形容詞比較級(jí)+than...Who runs faster, Lucy or Han mei? He is taller than I.Tina is more athletic than Sam.Holly’s best friend is funnier than she is.(3)最高級(jí)用于三者或三者以上比較,形容詞的最高級(jí)前常加定冠詞the.常用結(jié)構(gòu): A: the + 最高級(jí)+of / in...是......中最......He is the tallest of the three.He is the funniest in his class.The seats in the middle of the cinema are the best of all.John is the fattest in his class.