第一篇:2015高中數(shù)學(xué) 初高中銜接教程 第九講 一次分式函數(shù)練習(xí) 新人教版
第九講 一次分式函數(shù)
【要點(diǎn)歸納】
ax?b(a,c不同時(shí)為0)的函數(shù),叫做一次分式函數(shù)。
cx?dk(1)特殊地,y?(k?0)叫做反比例函數(shù);
xax?b(a,c不同時(shí)為0)的圖象是雙曲線(xiàn),(2)一次分式函數(shù)y?cx?ddadax??,y?(c?0)是兩條漸近線(xiàn),對(duì)稱(chēng)中心為(?,)(c≠0)。
cccc形如y?【典例分析】
例1 說(shuō)明函數(shù)y?指出它的對(duì)稱(chēng)中心。
例2 求函數(shù)y?
例3 將函數(shù)f(x)?圖象
(1)求g(x)的表達(dá)式;
(2)求滿(mǎn)足g(x)≤2的x的取值范圍。例4 求函數(shù)y?
3x1的圖象可由函數(shù)y?的圖象經(jīng)過(guò)怎樣的平移變換而得到,并x?1x1?x在-3≤x≤-2上的最大值與最小值。1?x1的圖象向右平移1個(gè)單位,向上平移3個(gè)單位得到函數(shù)g(x)的x3?x(x?0)的值域。2x?1
例5 函數(shù)f(x)?x?a,當(dāng)且僅當(dāng)-1<x<1時(shí),f(x)?0 x?1(1)求常數(shù)a的值;
(2)若方程f(x)?mx有唯一的實(shí)數(shù)解,求實(shí)數(shù)m的值。
例6 已知y?a(x?0,a?0)圖象上的點(diǎn)到原點(diǎn)的最短距離為6 x(1)求常數(shù)a的值;(2)設(shè)y?a(x?0,a?0)圖象上三點(diǎn)A、B、C的橫坐標(biāo)分別是t,t+2,t+4,試求出xm。t最大的正整數(shù)m,使得總存在正數(shù)t,滿(mǎn)足△ABC的面積等于
【反饋練習(xí)】
1、若函數(shù)y=2/(x-2)的值域?yàn)閥≤1/3,則其定義域?yàn)開(kāi)____________。
2x?1的圖象關(guān)于點(diǎn)_____________對(duì)稱(chēng)。x?3x?93、若直線(xiàn)y=kx與函數(shù)y?的圖象相切,求實(shí)數(shù)k的值。
x?51?|x|
4、畫(huà)出函數(shù)y?的圖象。
x?
12、函數(shù)y??
5、若函數(shù)y?
6、(1)函數(shù)y?ax?1在(-2,+∞)是增函數(shù),求實(shí)數(shù)a的取值范圍。x?2ax?1的定義域、值域相同,試求出實(shí)數(shù)a的值; x?1ax?1(2)函數(shù)y?的圖象關(guān)于直線(xiàn)y=x對(duì)稱(chēng),試求出實(shí)數(shù)a的值。
x?1
第九講 一次分式函數(shù)
【典例分析】
例1 向左平移一個(gè)單位,再向上平移三個(gè)單位,對(duì)稱(chēng)中心為(-1,3)例2 分離常數(shù)得:y??1?2 在-3≤x≤-2上是減函數(shù),x?1 故 x??2,ymax??3;x??3,ymin??2
例3(1)g(x)?3?例4 ?2;(2)0?x?1 x?113?x3?y?y?3;提示:逆求法 由y?(x?0)得,x??0 22x?12y?1例5(1)a=1(2)m??3?22或0 例6(1)a=6(2)5 提示:利用根的分布先求出 0?m?6 【反饋練習(xí)】
1、x?2或x?8 提示: 法1:解分式不等式; 法2:圖象法。
2、對(duì)稱(chēng)中心(-3,-2)
3、k??1或?
4、略
5、圖象法:a?1 251
26、(1)a=1(2)a=1
第二篇:初高中英語(yǔ)銜接易錯(cuò)題50例-新人教 做了這么多練習(xí)總結(jié)的
初高中英語(yǔ)銜接易錯(cuò)題50例
1.Mr Liu _____ come to the party, but perhaps he will go to see her father.A.must B.should C.may D.ought to 【解釋】perhaps也許,表示不確定,may也是不確定 2.–Can I help you, sir?--I’d like to buy a TV set.--This way, please.We have many types for you ____.A.to choose B.to choose from C.choose D.to buy 3.There are so many good books in that bookstore that I can hardly know ___ to buy.A.what B.how C.which D.when 4.This straw hat ___ me.A.doesn’t fit for B.isn’t fit C.doesn’t fit D.fits to
【解釋】be fit for sb.fit做形容詞,所以前面要用be動(dòng)詞
fit sb.fit做動(dòng)詞,所以否定要用助動(dòng)詞
5.–Why not go climbing the mountain today? The weather is so fine.--______.A.So it is B.Why not? C.Because we have many things to do D.No it isn’t.【解釋】問(wèn)句中的why not表示勸誘和建議,而答句中選擇why not表示同意或贊成,意為“可以啊,為什么不可以呢”
6.Of course, there are many difficulties before us, but with our efforts everything will be ___.A.right B.easy C.good D.all right 【解釋】all right = fine 沒(méi)事
7.Doing more exercise can help us ___ diseases and give us energy.A.fight B.fight for C.fight at D.fight with 【解釋】fight既可以當(dāng)及物動(dòng)詞又可以不及物
8.He put his shoulder over his car and pushed it, but it ___ move, not ___.A.wouldn’t;even a bit B.didn’t;even a bit C.couldn’t;a bit D.didn’t much 【解釋】在這里是wouldn't的一種用法,就是表達(dá)物品的性能、功能缺失 9.--Can I help you?--Could you please change the large note for me?--Sorry, sir, I’m ____change at the moment.A.short for B.short C.short with D.short of 10.–So it’s nothing serious, Doctor?
--___.The children will be all right in a day or two.A.Yes B.No, it is C.No D.Yes, it isn’t 11.She felt ___ tired.So she decided to have a good rest.A.not a bit B.a bit of C.not a little D.not a few 【解釋】B答案后應(yīng)接名詞,而不是形容詞。D后應(yīng)接可數(shù)名詞。
A與C之間的區(qū)別:not a little=much not a bit 則相反,一點(diǎn)也不
12.In some parts of the country, ___ dies of that illness.A.one out ten children B.ten of one child C.one child in ten D.one for ten children 【?】13.Corn is a plant that doesn’t need ___ rice.A.water as much as B.as much water as C.as many as D.water as many as 14.Today there are far few cowboys, and they ___ live as they did.A.no doubt B.no wonder C.no matter D.no longer 15.When coal burns, part ___ it is left as ashes.A.of B.through C.to D.inside 16.I am afraid that you have given ___ little work to your work.A.much too B.too much C.very much D.how much 17.What he wanted to do was __ his hands of it.A.wash B.to have washed C.washing D.to be washing 【解釋】 這是因?yàn)閣hat he wanted to do 是 what he wanted himself to do 的省略,是這句的主語(yǔ)從句。英語(yǔ)中規(guī)定句子中前面的從句有do 或者do 的某種形式,其后的不定時(shí)(短語(yǔ))省to , 所以該句的表語(yǔ)(to)wash his hands 省去了to.原句是What he wanted to do was(to)wash his hands of it.18.We have worked out the plan and now we must put it into ___.A.fact B.reality C.practice D.deed 【解釋】put…into practice固定詞組 意思是付諸實(shí)踐
19.We didn’t plan our art exhibition like that but it ___ very well.A.worked out B.tried out C.went out D.carried out 20.Will you please ___ the sentences and tell me what the difference there is.A.compare to B.compare with C.compare D.comparing 21.People are usually curious about a person from ___ country.A.other B.another C.the other D.the others 22.By comparing notes, we may ___ different opinions and make the best plan.A.choose B.share C.give D.ask for 23.He came here late last night, or ___ , early in the morning.A.rather B.else C.rather than D.not 【解釋】or rather的意思是或者是
24.___ this book and tell me what you think of it.A.Look through B.Look on C.Look into D.Look up 25.In the dark street, there wasn’t a person ___ she could turn for help.A.that B.who C.from whom D.to whom 【解釋】turn to sb.for help 26.–We haven’t heard from her for a long time.--What do you suppose ___ to her? A.was happening B.to happen C.has happened D.having happened 27.–What made you so surprised?--___ my house ___ saying good-bye.A.Jim’s leaving;without B.Jim leaving;without C.Jim’s left;instead of D.Jim’s leaving;instead of
28.The fire spread through the hotel very quickly but everyone __ get out.
A.had B.would C.could D.as able to 29.I should I like to ___ you and your men by the hand, and thank each of you personally for all you have done.A.thank B.love C.shake D.greet 30.The little boy has a great ___ for language: he can speak three foreign languages very well.A.present B.gift C.joy D.interest 31.I bought a pair of new shoes which is very similar ____ a pair I had before.A.with B.to C.about D.on 32.He made another wonderful discovery, ___ of great importance to science.A.which I think is B.which I think it is C.which I think D.I think which is 33.We should ___ the great man with the title of the National Hero.A.honor B.offer C.give D.name 34.Would you ___ to us why you would like to give up such a good job? A.show B.explain C.tell D.discuss 35.His careless driving ___ him his life last year.A.cost B.spent C.paid D.took 36.With her dearest jewels ___ , she was almost mad.A.missed B.gone C.being stolen D.were lost 37.On her way home, she found her handbag ___.A.being lost B.missing C.losing D.has gone 38.Helen ___ a Chinese for almost twenty years.A.has married to B.has married C.has been married to D.has been married with 39.I’ll ___ my first teacher’s home tomorrow.A.call for B.call at C.call in D.call on 40.This house is worth 1,000 yuan ___.A.more and less B.after all C.at the most D.at the presant 41.They were the first people ___ in this vast farmland.A.living B.to live C.lived D.live 42.Such difficult experiments ___ you did that day need much patience ___ imagination.A.like;as well as B.as;as well as C.for;as well D.like;as well 43.All the experiments __ by Miss Lu were highly praised.A.conducted B.conducting C.conduct D.had conducted 44.All these ideas may seem strange to you, but scientists are working hard to ___ them one by one in time.A.come true B.realize C.make D.produce 45.He must have got the book yesterday, ___ he ? A.mustn’t B.haven’t C.hasn’t D.didn’t
46.The farmer got the tractor ____ in the field all the day.A.to work B.worked C.working D.work
47.They wear winter clothes to ___ themselves ___ bad cold.A.prevent;against B.keep;from C.stop;/ D.protect;from 48.Have you see a horse ___ the pole over there? A.tying at B.tied by C.tied to D.tied with 49.I you ___ the nature in farming, you will do more work and get less harvest.A.go against B.go with C.work after D.do against 50.Each team scored twice and the game ____.A.put an end B.ended in a tie C.made an end C.ended up
參考答案
1--10 CBCCB DAADC 11--20 CCBDA AACAC 31--40 BAABA BBCBC 41--50 BBABD CDCAB
21--30 BBAAD CADCB
第三篇:11-12學(xué)年高中數(shù)學(xué) 1.2.1 幾個(gè)常用的函數(shù)的導(dǎo)數(shù)同步練習(xí)新人教A版選修2-2
選修2-2
1.2
第1課時(shí)
幾個(gè)常用的函數(shù)的導(dǎo)數(shù)
一、選擇題
1.下列結(jié)論不正確的是()
A.若y=0,則y′=0
B.若y=5x,則y′=5
C.若y=x-1,則y′=-x-2
[答案] D
2.若函數(shù)f(x)=,則f′(1)等于()
A.0
B.-
C.2
D.[答案] D
[解析] f′(x)=()′=,所以f′(1)==,故應(yīng)選D.3.拋物線(xiàn)y=x2在點(diǎn)(2,1)處的切線(xiàn)方程是()
A.x-y-1=0
B.x+y-3=0
C.x-y+1=0
D.x+y-1=0
[答案] A
[解析] ∵f(x)=x2,∴f′(2)=li
=li
=1.∴切線(xiàn)方程為y-1=x-2.即x-y-1=0.4.已知f(x)=x3,則f′(2)=()
A.0
B.3x2
C.8
D.12
[答案] D
[解析] f′(2)=
=
=
(6Δx+12)=12,故選D.5.已知f(x)=xα,若f′(-1)=-2,則α的值等于()
A.2
B.-2
C.3
D.-3
[答案] A
[解析] 若α=2,則f(x)=x2,∴f′(x)=2x,∴f′(-1)=2×(-1)=-2適合條件.故應(yīng)選A.6.函數(shù)y=(x+1)2(x-1)在x=1處的導(dǎo)數(shù)等于()
A.1
B.2
C.3
D.4
[答案] D
[解析] ∵y=x3+x2-x-1
∴=
=4+4Δx+(Δx)2,∴y′|x=1=li
=li[4+4·Δx+(Δx)2]=4.故應(yīng)選D.7.曲線(xiàn)y=x2在點(diǎn)P處切線(xiàn)斜率為k,當(dāng)k=2時(shí)的P點(diǎn)坐標(biāo)為()
A.(-2,-8)
B.(-1,-1)
C.(1,1)
D.[答案] C
[解析] 設(shè)點(diǎn)P的坐標(biāo)為(x0,y0),∵y=x2,∴y′=2x.∴k==2x0=2,∴x0=1,∴y0=x=1,即P(1,1),故應(yīng)選C.8.已知f(x)=f′(1)x2,則f′(0)等于()
A.0
B.1
C.2
D.3
[答案] A
[解析] ∵f(x)=f′(1)x2,∴f′(x)=2f′(1)x,∴f′(0)=2f′(1)×0=0.故應(yīng)選A.9.曲線(xiàn)y=上的點(diǎn)P(0,0)的切線(xiàn)方程為()
A.y=-x
B.x=0
C.y=0
D.不存在[答案] B
[解析] ∵y=
∴Δy=-
=
=
∴=
∴曲線(xiàn)在P(0,0)處切線(xiàn)的斜率不存在,∴切線(xiàn)方程為x=0.10.質(zhì)點(diǎn)作直線(xiàn)運(yùn)動(dòng)的方程是s=,則質(zhì)點(diǎn)在t=3時(shí)的速度是()
A.B.C.D.[答案] A
[解析] Δs=-=
=
=
∴l(xiāng)i
==,∴s′(3)=
.故應(yīng)選A.二、填空題
11.若y=x表示路程關(guān)于時(shí)間的函數(shù),則y′=1可以解釋為_(kāi)_______.
[答案] 某物體做瞬時(shí)速度為1的勻速運(yùn)動(dòng)
[解析] 由導(dǎo)數(shù)的物理意義可知:y′=1可以表示某物體做瞬時(shí)速度為1的勻速運(yùn)動(dòng).
12.若曲線(xiàn)y=x2的某一切線(xiàn)與直線(xiàn)y=4x+6平行,則切點(diǎn)坐標(biāo)是________.
[答案](2,4)
[解析] 設(shè)切點(diǎn)坐標(biāo)為(x0,x),因?yàn)閥′=2x,所以切線(xiàn)的斜率k=2x0,又切線(xiàn)與y=4x+6平行,所以2x0=4,解得x0=2,故切點(diǎn)為(2,4).
13.過(guò)拋物線(xiàn)y=x2上點(diǎn)A的切線(xiàn)的斜率為_(kāi)_____________.
[答案]
[解析] ∵y=x2,∴y′=x
∴k=×2=.14.(2010·江蘇,8)函數(shù)y=x2(x>0)的圖像在點(diǎn)(ak,a)處的切線(xiàn)與x軸的交點(diǎn)的橫坐標(biāo)為ak+1,其中k∈N*,若a1=16,則a1+a3+a5的值是________.
[答案] 21
[解析] ∵y′=2x,∴過(guò)點(diǎn)(ak,a)的切線(xiàn)方程為y-a=2ak(x-ak),又該切線(xiàn)與x軸的交點(diǎn)為(ak+1,0),所以ak+1=ak,即數(shù)列{ak}是等比數(shù)列,首項(xiàng)a1=16,其公比q=,∴a3=4,a5=1,∴a1+a3+a5=21.三、解答題
15.過(guò)點(diǎn)P(-2,0)作曲線(xiàn)y=的切線(xiàn),求切線(xiàn)方程.
[解析] 因?yàn)辄c(diǎn)P不在曲線(xiàn)y=上,故設(shè)切點(diǎn)為Q(x0,),∵y′=,∴過(guò)點(diǎn)Q的切線(xiàn)斜率為:=,∴x0=2,∴切線(xiàn)方程為:y-=(x-2),即:x-2y+2=0.16.質(zhì)點(diǎn)的運(yùn)動(dòng)方程為s=,求質(zhì)點(diǎn)在第幾秒的速度為-.[解析] ∵s=,∴Δs=-
==
∴l(xiāng)i
==-.∴-=-,∴t=4.即質(zhì)點(diǎn)在第4秒的速度為-.17.已知曲線(xiàn)y=.(1)求曲線(xiàn)在點(diǎn)P(1,1)處的切線(xiàn)方程;
(2)求曲線(xiàn)過(guò)點(diǎn)Q(1,0)處的切線(xiàn)方程;
(3)求滿(mǎn)足斜率為-的曲線(xiàn)的切線(xiàn)方程.
[解析] ∵y=,∴y′=-.(1)顯然P(1,1)是曲線(xiàn)上的點(diǎn).所以P為切點(diǎn),所求切線(xiàn)斜率為函數(shù)y=在P(1,1)點(diǎn)導(dǎo)數(shù).
即k=f′(1)=-1.所以曲線(xiàn)在P(1,1)處的切線(xiàn)方程為
y-1=-(x-1),即為y=-x+2.(2)顯然Q(1,0)不在曲線(xiàn)y=上.
則可設(shè)過(guò)該點(diǎn)的切線(xiàn)的切點(diǎn)為A,那么該切線(xiàn)斜率為k=f′(a)=.則切線(xiàn)方程為y-=-(x-a).①
將Q(1,0)坐標(biāo)代入方程:0-=(1-a).
解得a=,代回方程①整理可得:
切線(xiàn)方程為y=-4x+4.(3)設(shè)切點(diǎn)坐標(biāo)為A,則切線(xiàn)斜率為k=-=-,解得a=±,那么A,A′.代入點(diǎn)斜式方程得y-=-(x-)或y+=-(x+).整理得切線(xiàn)方程為y=-x+或y=-x-.18.求曲線(xiàn)y=與y=x2在它們交點(diǎn)處的兩條切線(xiàn)與x軸所圍成的三角形的面積.
[解析] 兩曲線(xiàn)方程聯(lián)立得解得.∴y′=-,∴k1=-1,k2=2x|x=1=2,∴兩切線(xiàn)方程為x+y-2=0,2x-y-1=0,所圍成的圖形如上圖所示.
∴S=×1×=.
第四篇:高中數(shù)學(xué):2.1.4《函數(shù)的奇偶性》教案(新人教B必修1)
2.1.4 函數(shù)的奇偶性 學(xué)案
【預(yù)習(xí)要點(diǎn)及要求】 1.函數(shù)奇偶性的概念;
2.由函數(shù)圖象研究函數(shù)的奇偶性; 3.函數(shù)奇偶性的判斷;
4.能運(yùn)用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性; 5.理解函數(shù)的奇偶性?!局R(shí)再現(xiàn)】
1.軸對(duì)稱(chēng)圖形:
2中心對(duì)稱(chēng)圖形: 【概念探究】
1、畫(huà)出函數(shù)f(x)?x,與g(x)?x的圖像;并觀(guān)察兩個(gè)函數(shù)圖像的對(duì)稱(chēng)性。
2、求出x??3,x??2,x??
結(jié)論:f(?x)??f(x),g(?x)?g(x)。
3、奇函數(shù):___________________________________________________
4、偶函數(shù):______________________________________________________ 【概念深化】(1)、強(qiáng)調(diào)定義中“任意”二字,奇偶性是函數(shù)在定義域上的整體性質(zhì)。(2)、奇函數(shù)偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱(chēng)。
5、奇函數(shù)與偶函數(shù)圖像的對(duì)稱(chēng)性:
如果一個(gè)函數(shù)是奇函數(shù),則這個(gè)函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對(duì)稱(chēng)中心的__________。反之,如果一個(gè)函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對(duì)稱(chēng)中心的中心對(duì)稱(chēng)圖形,則這個(gè)函數(shù)是___________。
如果一個(gè)函數(shù)是偶函數(shù),則這個(gè)函數(shù)的圖像是以y軸為對(duì)稱(chēng)軸的__________。反之,如果一個(gè)函數(shù)的圖像是關(guān)于y軸對(duì)稱(chēng),則這個(gè)函數(shù)是___________。
6.根據(jù)函數(shù)的奇偶性,函數(shù)可以分為_(kāi)___________________________________.【例題解析】
例1.已知f(x)是奇函數(shù),且當(dāng)x?0時(shí),f(x)?x?2x,求當(dāng)x?0時(shí)f(x)的表達(dá)式
例2.設(shè)為實(shí)數(shù),函數(shù)f(x)?x?|x?a|?1,x?R,討論f(x)的奇偶性
參考答案:
例1.解:設(shè)x?0,則?x?0,?f(?x)?(?x)?2(?x)?x?2x,又因?yàn)閒(x)為奇函數(shù),2222321時(shí)的函數(shù)值,寫(xiě)出f(?x),g(?x)。2 ?f(?x)??f(x),?f(x)??(x?2x)??x?2x
?當(dāng)x?0時(shí)f(x)??x?2x
評(píng)析:在哪個(gè)區(qū)間上求解析式,x就設(shè)在哪個(gè)區(qū)間上,然后要利用已知區(qū)間的解析式進(jìn)行代入,利用f(x)的奇偶性,把f(?x)寫(xiě)成?f(x)或f(x),從而解出f(x)
例2.解:當(dāng)a?0時(shí),f(?x)?(?x)?|?x|?1?x?|x|?1?f(x),所以f(x)為偶函數(shù)
當(dāng)a?0時(shí),f(a)?a?1,f(?a)?a?2|a|?
1此時(shí)函數(shù)f(x)既不是奇函數(shù),也不是偶函數(shù)
評(píng)析:對(duì)于參數(shù)的不同取值函數(shù)的奇偶性不同,因而需對(duì)參數(shù)進(jìn)行討論 達(dá)標(biāo)練習(xí):
一、選擇題
1、函數(shù)f(x)?x2?2222222x的奇偶性是()
A.奇函數(shù) B.偶函數(shù) C.非奇非偶函數(shù) D.既是奇函數(shù)又是偶函數(shù)
2、函數(shù)y?f(x)是奇函數(shù),圖象上有一點(diǎn)為(a,f(a)),則圖象必過(guò)點(diǎn)()
A.(a,f(?a))B.(?a,f(a))C.(?a,?f(a))D.(a,二、填空題:
1)f(a)
3、f(x)為R上的偶函數(shù),且當(dāng)x?(??,0)時(shí),f(x)?x(x?1),則當(dāng)x?(0,??)時(shí),f(x)?___________.4、函數(shù)f(x)為偶函數(shù),那么f(x)與f(|x|)的大小關(guān)系為 __.三、解答題:
5、已知函數(shù)f(x)是定義在R上的不恒為0的函數(shù),且對(duì)于任意的a,b?R,都有f(ab)?af(b)?bf(a)
(1)、求f(0),f(1)的值;
(2)、判斷函數(shù)f(x)的奇偶性,并加以證明。= 參考答案:
1、C;
2、C;
3、x(x+1);
4、相等; 5.(1)f(0)?f(0?0)?0?f(0)?0?f(0)?0f(1)?f(1?1)?f(1)?f(1),?f(1)?0(2)?f(1)?f[(?1)2]??f(?1)?f(?1)?0?f(?1)?0,f(?x)?f(?1?x)??f(x)?f(?1)??f(x)?f(x)為奇函數(shù).課堂練習(xí):教材第49頁(yè) 練習(xí)A、第50頁(yè) 練習(xí)B 小結(jié):本節(jié)課學(xué)習(xí)了那些內(nèi)容? 請(qǐng)同學(xué)們自己總結(jié)一下。課后作業(yè):第52頁(yè)習(xí)題2-1A第6、7題
第五篇:(新課程)高中數(shù)學(xué) 2.1.1《函數(shù)》教案 新人教B版必修1
2.1.1函數(shù) 教案(2)
教學(xué)目標(biāo):理解映射的概念;
用映射的觀(guān)點(diǎn)建立函數(shù)的概念.教學(xué)重點(diǎn):用映射的觀(guān)點(diǎn)建立函數(shù)的概念.教學(xué)過(guò)程:
1.通過(guò)對(duì)教材上例
4、例
5、例6的研究,引入映射的概念.注:1,補(bǔ)充例子:投擲飛標(biāo)時(shí),每一支飛標(biāo)射到盤(pán)上時(shí),是射到盤(pán)上的唯一點(diǎn)上。于是,如果我們把A看作是飛標(biāo)組成的集合,B看作是盤(pán)上的點(diǎn)組成的集合,那么,剛才的投飛標(biāo)相當(dāng)于集合A到集合B的對(duì)應(yīng),且A中的元素對(duì)應(yīng)B中唯一的元素,是特殊的對(duì)應(yīng).同樣,如果我們把A看作是實(shí)數(shù)組成的集合,B看作是數(shù)軸上的點(diǎn)組成的集合,或把A看作是坐標(biāo)平面內(nèi)的點(diǎn)組成的集合,B看作是有序?qū)崝?shù)對(duì)組成的集合,那么,這兩個(gè)對(duì)應(yīng)也都是集合A到集合B的對(duì)應(yīng),并且和上述投飛標(biāo)一樣,也都是A中元素對(duì)應(yīng)B中唯一元素的特殊對(duì)應(yīng).一般地,設(shè)A,B是兩個(gè)集合,如果按照某種對(duì)應(yīng)法則f,對(duì)于集合A中的任何一個(gè)元素,在集合B中都有唯一的元素和它對(duì)應(yīng),那么這樣的對(duì)應(yīng)(包括集合A,B以及A到B的對(duì)應(yīng)法則f)叫做集合A到集合B的映射,記作f:A→B.其中與A中的元素a對(duì)應(yīng)的B中的元素b叫做a的象,a叫做b的原象.2,強(qiáng)調(diào)象、原象、定義域、值域、一一對(duì)應(yīng)和一一映射等概念 3.映射觀(guān)點(diǎn)下的函數(shù)概念 如果A,B都是非空的數(shù)集,那么A到B的映射f:A→B就叫做A到B的函數(shù),記作y=f(x),其中x∈A,y∈B.原象的集合A叫做函數(shù)y=f(x)的定義域,象的集合C(C?B)叫做函數(shù)y=f(x)的值域.函數(shù)符號(hào)y=f(x)表示“y是x的函數(shù)”,有時(shí)簡(jiǎn)記作函數(shù)f(x).這種用映射刻劃的函數(shù)定義我們稱(chēng)之為函數(shù)的近代定義.注:新定義更抽象更一般
?1(x是有理數(shù))如:f(x)??(狄利克雷函數(shù))(0x是無(wú)理數(shù))? 4.補(bǔ)充例子:
例1.已知下列集合A到B的對(duì)應(yīng),請(qǐng)判斷哪些是A到B的映射?并說(shuō)明理由:
⑴ A=N,B=Z,對(duì)應(yīng)法則:“取相反數(shù)”;
⑵A={-1,0,2},B={-1,0,1/2},對(duì)應(yīng)法則:“取倒數(shù)”; ⑶A={1,2,3,4,5},B=R,對(duì)應(yīng)法則:“求平方根”;
00⑷A={?|0???90},B={x|0?x?1},對(duì)應(yīng)法則:“取正弦”.例2.(1)(x,y)在影射f下的象是(x+y,x-y),則(1,2)在f下的原象是_________。
2(2)已知:f:x?y=x是從集合A=R到B=[0,+?]的一個(gè)映射,則B中的元素1在A中的原象是_________。
(3)已知:A={a,b},B={c,d},則從A到B的映射有幾個(gè)。
【典例解析】
例⒈下列對(duì)應(yīng)是不是從A到B的映射,為什么?
⑴A=(0,+∞),B=R,對(duì)應(yīng)法則是"求平方根";
x2⑵A={x|-2≤x≤2},B={y|0≤y≤1},對(duì)應(yīng)法則是f:x→y=(其1
中x∈A,y∈B)
2⑶A={x|0≤x≤2},B={y|0≤y≤1},對(duì)應(yīng)法則是f:x→y=(x-2)(其中x∈A,y∈B)
x⑷A={x|x∈N},B={-1,1},對(duì)應(yīng)法則是f:x→y=(-1)(其中x∈A,y∈B).
例⒉設(shè)A=B=R,f:x→y=3x+和-3的原象.
6,求⑴集合A中112和-3的象;⑵集合B中22
參考答案:
例⒈解析:⑴不是從A到B的映射.因?yàn)槿魏握龜?shù)的平方根都有兩個(gè),所以對(duì)A中的任何一個(gè)元素,在B中都有兩個(gè)元素與之對(duì)應(yīng).⑵是從A到B的映射.因?yàn)椋林忻總€(gè)數(shù)平方除以4后,都在B中有唯一的數(shù)與之對(duì)應(yīng).⑶不是從A到B的映射.因?yàn)椋林杏械脑卦?B中無(wú)元素與之對(duì)應(yīng).如0∈A,而(0-2)=4?B.⑷是從A到B的映射.因?yàn)椋钡钠鏀?shù)次冪是-1,而偶數(shù)次冪是1.∴⑴⑶不是,⑵⑷是.
[點(diǎn)評(píng)]判斷一個(gè)對(duì)應(yīng)是否為映射,主要由其定義入手進(jìn)行分析.
1115和x=-3分別代入y=3x+6,得的象是,-3的象是-3; 222111
1⑵將y=和y=-3,分別代入y=3x+6,得的原象-,-3的原象226例⒉解:⑴將x=是-3.
[點(diǎn)評(píng)]由映射中象與原象的定義以及兩者的對(duì)應(yīng)關(guān)系求解. 課堂練習(xí):教材第36頁(yè) 練習(xí)A、B。
小結(jié):學(xué)習(xí)用映射觀(guān)點(diǎn)理解函數(shù),了解映射的性質(zhì)。課后作業(yè):第53頁(yè)習(xí)題2-1A第1、2題。