第一篇:高中數(shù)學(xué)教學(xué)案例(范文模版)
高中數(shù)學(xué)教學(xué)案例:指數(shù)函數(shù)的圖像與性質(zhì)
提出問題:
新課程認(rèn)為知識不是單方面通過教師傳授得到的,而是學(xué)生在一定的情境中,運用已有的學(xué)習(xí)經(jīng)驗,并通過與他人(教師指導(dǎo)和同學(xué)的幫助)協(xié)作,主動建構(gòu)而獲得的。它強調(diào)以學(xué)生為中心,視學(xué)生為認(rèn)知的主體,教師只對學(xué)生的意義建構(gòu)起幫助和促進作用。通過多年教學(xué)實踐和對新課程的認(rèn)識,我認(rèn)為若遵循這個原則進行數(shù)學(xué)課堂教學(xué),學(xué)生的學(xué)習(xí)將是一種高效的活動。
教材中的地位:
本節(jié)內(nèi)容是在指數(shù)范圍擴充到實數(shù)的基礎(chǔ)上引入指數(shù)函數(shù)的,而指數(shù)函數(shù)是高中研究的第一種具體函數(shù)。是在初中已經(jīng)初步探討了正比例函數(shù),反比例函數(shù),一次函數(shù),二次函數(shù)的圖像和性質(zhì)的基礎(chǔ)上,在進一步學(xué)習(xí)了函數(shù)的概念及有關(guān)性質(zhì)的前提下,去研究學(xué)習(xí)的。重點是指數(shù)函數(shù)的圖像及性質(zhì),難點在于弄清楚底數(shù)a對于函數(shù)變化的影響。這節(jié)課主要是學(xué)生利用描點法畫出函數(shù)的圖像,并描述出函數(shù)的圖像特征,從而指出函數(shù)的性質(zhì)。使學(xué)生從形到數(shù)的熟悉,體驗研究函數(shù)的過程與思路,實現(xiàn)意識的深化。
設(shè)計背景:
在新教材的教學(xué)中,我慢慢體會到新教材滲透的、螺旋式上升的基本理念,知識點的形成過程經(jīng)歷從具體的實例引入,形成概念,再次運用于實際問題或具體數(shù)學(xué)問題的過程,它的應(yīng)用性,實用性更明顯的體現(xiàn)出來。學(xué)數(shù)學(xué)重在培養(yǎng)學(xué)生的思維品質(zhì),經(jīng)過多年的數(shù)學(xué)學(xué)習(xí),學(xué)生還是害怕學(xué)數(shù)學(xué),尤其高中的數(shù)學(xué),它對于學(xué)生來說顯得很抽象。所以如果再讓讓學(xué)生感到數(shù)學(xué)離我們的生活太遠(yuǎn),那么將很難激發(fā)他們的學(xué)習(xí)愛好。所以在教學(xué)中我盡力抓住知識的本質(zhì),以實際問題引入新知識。另外,就本章來說,指數(shù)函數(shù)是學(xué)習(xí)函數(shù)概念及基本性質(zhì)之后研究的第一個重要的函數(shù),讓學(xué)生學(xué)會研究一個新的具體函數(shù)的方法比學(xué)會本身的知識更重要。在這個過程中,所有的知識都是生疏的,在大腦中沒有形成基本的框架結(jié)構(gòu),需要老師的引導(dǎo),使他們逐漸建立。數(shù)學(xué)中任何知識的形成都體現(xiàn)出它的思想與方法,因而授課中注重讓學(xué)生領(lǐng)悟其中的思想,運用其中的方法去學(xué)習(xí)新的知識,是非常重要的。
教學(xué)目標(biāo):
一、知識:
理解指數(shù)函數(shù)的定義,能初步把握指數(shù)函數(shù)的圖像,性質(zhì)及其簡單應(yīng)用。
二、過程與方法:
由實例引入指數(shù)函數(shù)的概念,利用描點作圖的方法做出指數(shù)函數(shù)的圖像,(有條
件的話借助計算機演示驗證指數(shù)函數(shù)圖像)由圖像研究指數(shù)函數(shù)的性質(zhì)。利用性
質(zhì)解決實際問題。
三、能力:
1.通過指數(shù)函數(shù)的圖像和性質(zhì)的研究,培養(yǎng)學(xué)生觀察,分析和歸納的能力,進
一步體會數(shù)形結(jié)合的思想方法。
2.通過對指數(shù)函數(shù)的研究,使學(xué)生能把握函數(shù)研究的基本方法。
教學(xué)過程:
由實際問題引入:
問題1:某種細(xì)胞分裂時,由1個分裂成2個,2個分裂成4個,?1個這樣的細(xì)胞分裂x次后,得到的細(xì)胞的個數(shù)y與x之間的關(guān)系是什么?
分裂次數(shù)與細(xì)胞個數(shù)
1,2;2,2×2=22;3,2×2×2=23;????;x,2×2×……×2=2x
歸納:y=2x
問題2:某種放射性物質(zhì)不斷變化為其它物質(zhì),每經(jīng)過1年剩留的這種物質(zhì)是原
來的84%,那么經(jīng)過x年后剩留量y與x的關(guān)系是什么?
經(jīng)過1年,剩留量y=1×84%=0.841;經(jīng)過2年,剩留量y=0.84×0.84=0.842????經(jīng)過x年,剩留量y=0.84x
尋找異同:
你能從以上的兩個例子中得到的關(guān)系式里找到什么異同點嗎?
共同點:變量x與y構(gòu)成函數(shù)關(guān)系式,是指數(shù)的形式,自變量在指數(shù)位置,底數(shù)
是常數(shù);不同點:底數(shù)的取值不同。
那么,今天我們來學(xué)習(xí)新的一個基本函數(shù):指數(shù)函數(shù)
得到指數(shù)函數(shù)的定義:定義:形如y=ax(a>0且a≠1)的函數(shù)叫做指數(shù)函數(shù)。
在以前我們學(xué)過的函數(shù)中,一次函數(shù)用形如y=kx+b(k≠0)的形式表示,反比
例函數(shù)用形如y=k/x(k≠0)表示,二次函數(shù)y=ax2+bx+c(a≠0)表示。對于其一
般形式上的系數(shù)都有相應(yīng)的限制。問:為什么指數(shù)函數(shù)對底數(shù)有這樣的要求呢?若a=0,當(dāng)x>0時,恒等于0,沒有研究價值;當(dāng)x≤0時,無意義。
若a<0,當(dāng)x=,???時是無意義的,沒有研究價值。
若a=1,則=1,是一個常量,也沒有研究的必要。
所以有規(guī)定且a>0且a≠1。
由定義,我們可以對指數(shù)函數(shù)有一初步熟悉。
進一步理解函數(shù)的定義:
指數(shù)函數(shù)的定義域:在我們學(xué)過的指數(shù)運算中,指數(shù)可以是有理數(shù),當(dāng)指數(shù)是無
理數(shù)時,也是一個確定的實數(shù),對于無理數(shù),學(xué)過的有理指數(shù)冪的性質(zhì)和運算法
則都適用,所以指數(shù)函數(shù)的定義域為R.研究函數(shù)的途徑:由函數(shù)的圖像的性質(zhì),從形與數(shù)兩方面研究。
學(xué)習(xí)函數(shù)的一個很重要的目標(biāo)就是應(yīng)用,那么首先要對函數(shù)作一研究,研究函數(shù)的圖像及性質(zhì),然后利用其圖像性質(zhì)去解決數(shù)學(xué)問題和實際問題。根據(jù)以往的經(jīng)
驗,你會從那幾個角度考慮?(圖像的分布范圍,圖像的變化趨勢,?)圖像的分布情況與函數(shù)的定義域,值域有關(guān),函數(shù)的變化趨勢體現(xiàn)函數(shù)的單調(diào)性。引導(dǎo)
學(xué)生從定義域,值域,單調(diào)性,奇偶性,與坐標(biāo)軸的交點情況著手開始。
首先我們做出指數(shù)函數(shù)的圖像,我們研究一般性的事物,常用的方法是:由特殊
到一般。
我們以具體函數(shù)入手,讓學(xué)生以小組形式取不同底數(shù)的指數(shù)函數(shù)畫它們的圖像,將學(xué)生畫的函數(shù)圖像展示,(畫函數(shù)的圖像的步驟是:列表,描點,連線。)。最后,老師在黑板(電腦)上演示列表,描點,連線的過程,并且,畫出取不同的值時,函數(shù)的圖像。
要求學(xué)生描述出指數(shù)函數(shù)圖像的特征,并試著描述出性質(zhì)。
數(shù)學(xué)發(fā)展的歷史表明,每一個重要的數(shù)學(xué)概念的形成和發(fā)展,其中都有豐富的經(jīng)歷,新課程較好的體現(xiàn)了這點。對新課程背景下的學(xué)生而言,數(shù)學(xué)的知識應(yīng)
該是一個數(shù)學(xué)化的過程,即通過對常識材料進行細(xì)致的觀察、思考,借助于分析、比較、綜合、抽象、概括等思維活動,對常識材料進行去粗取精、去偽存真的精
加工。該案例正是從數(shù)學(xué)研究和數(shù)學(xué)實驗的過程中進行設(shè)計。雖然學(xué)生的思維不
一定真實的重演了人類對數(shù)學(xué)知識探索的全過程,但確確實實通過實驗、觀察、比較、分析、歸納、抽象、概括等思維活動,在探索中將數(shù)學(xué)數(shù)學(xué)化,從而才使
學(xué)生對數(shù)學(xué)學(xué)習(xí)產(chǎn)生了樂趣,對數(shù)學(xué)的研究方法有了一定的了解。
雖然學(xué)生要學(xué)的數(shù)學(xué)是歷史上前人已建構(gòu)好了的,但對他們而言,仍是全新的、未知的,需要用他們自己的學(xué)習(xí)活動來再現(xiàn)類似的過程。該案例正是從創(chuàng)設(shè)
問題情景作為教學(xué)設(shè)計的重要的內(nèi)容之一。教師應(yīng)該把教學(xué)設(shè)計成學(xué)生動手操
作、觀察猜想、揭示規(guī)律等一系列過程,側(cè)重于學(xué)生的探索、分析與思考,側(cè)重
于過程的探究及在此過程中所形成的一般數(shù)學(xué)能力。
教師的地位應(yīng)由主導(dǎo)者轉(zhuǎn)變?yōu)橐龑?dǎo)者,使教學(xué)活動真正成為學(xué)生的活動。在教學(xué)過程中,把學(xué)習(xí)的主動權(quán)交給學(xué)生,在時間和空間上保證學(xué)生在教師的指導(dǎo)
下,學(xué)生能自己獨立自主的探究學(xué)習(xí)。使教學(xué)活動始終處于學(xué)生的“最近發(fā)展區(qū)”,使每一個學(xué)生通過自己的努力,在自己原有的基礎(chǔ)上都有所獲,都有提高??傊?,通過案例研究,不斷研究新教材、新理念,不斷調(diào)整教學(xué)策略優(yōu)化課
堂教學(xué),培養(yǎng)學(xué)生探究學(xué)習(xí)與創(chuàng)新學(xué)習(xí)能力將是我們在數(shù)學(xué)教學(xué)中要繼續(xù)探究的課題。
第二篇:高中數(shù)學(xué)教學(xué)案例
高中數(shù)學(xué)教學(xué)案例:指數(shù)函數(shù)的圖像與性質(zhì)
一、提出問題:
新課程認(rèn)為知識不是單方面通過教師傳授得到的,而是學(xué)生在一定的情境中,運用已有的學(xué)習(xí)經(jīng)驗,并通過與他人(教師指導(dǎo)和同學(xué)的幫助)協(xié)作,主動建構(gòu)而獲得的。它強調(diào)以學(xué)生為中心,視學(xué)生為認(rèn)知的主體,教師只對學(xué)生的意義建構(gòu)起幫助和促進作用。通過多年教學(xué)實踐和對新課程的認(rèn)識,我認(rèn)為若遵循這個原則進行數(shù)學(xué)課堂教學(xué),學(xué)生的學(xué)習(xí)將是一種高效的活動。
二、教材中的地位:
本節(jié)內(nèi)容是在指數(shù)范圍擴充到實數(shù)的基礎(chǔ)上引入指數(shù)函數(shù)的,而指數(shù)函數(shù)是高中研究的第一種具體函數(shù)。是在初中已經(jīng)初步探討了正比例函數(shù),反比例函數(shù),一次函數(shù),二次函數(shù)的圖像和性質(zhì)的基礎(chǔ)上,在進一步學(xué)習(xí)了函數(shù)的概念及有關(guān)性質(zhì)的前提下,去研究學(xué)習(xí)的。重點是指數(shù)函數(shù)的圖像及性質(zhì),難點在于弄清楚底數(shù)a對于函數(shù)變化的影響。這節(jié)課主要是學(xué)生利用描點法畫出函數(shù)的圖像,并描述出函數(shù)的圖像特征,從而指出函數(shù)的性質(zhì)。使學(xué)生從形到數(shù)的熟悉,體驗研究函數(shù)的過程與思路,實現(xiàn)意識的深化。
三、設(shè)計背景:
在新教材的教學(xué)中,我慢慢體會到新教材滲透的、螺旋式上升的基本理念,知識點的形成過程經(jīng)歷從具體的實例引入,形成概念,再次運用于實際問題或具體數(shù)學(xué)問題的過程,它的應(yīng)用性,實用性更明顯的體現(xiàn)出來。學(xué)數(shù)學(xué)重在培養(yǎng)學(xué)生的思維品質(zhì),經(jīng)過多年的數(shù)學(xué)學(xué)習(xí),學(xué)生還是害怕學(xué)數(shù)學(xué),尤其高中的數(shù)學(xué),它對于學(xué)生來說顯得很抽象。所以如果再讓學(xué)生感到數(shù)學(xué)離我們的生活太遠(yuǎn),那么將很難激發(fā)他們的學(xué)習(xí)興趣。所以在教學(xué)中我盡力抓住知識的本質(zhì),以實際問題引入新知識。另外,就本章來說,指數(shù)函數(shù)是學(xué)習(xí)函數(shù)概念及基本性質(zhì)之后研究的第一個重要的函數(shù),讓學(xué)生學(xué)會研究一個新的具體函數(shù)的方法比學(xué)會本身的知識更重要。在這個過程中,所有的知識都是生疏的,在大腦中沒有形成基本的框架結(jié)構(gòu),需要老師的引導(dǎo),使他們逐漸建立。數(shù)學(xué)中任何知識的形成都體現(xiàn)出它的思想與方法,因而授課中注重讓學(xué)生領(lǐng)悟其中的思想,運用其中的方法去學(xué)習(xí)新的知識,是非常重要的。
四、教學(xué)目標(biāo):
(一、)知識:
理解指數(shù)函數(shù)的定義,能初步把握指數(shù)函數(shù)的圖像,性質(zhì)及其簡單應(yīng)用。
(二、)過程與方法:
由實例引入指數(shù)函數(shù)的概念,利用描點作圖的方法做出指數(shù)函數(shù)的圖像,(有條件的話借助計算機演示驗證指數(shù)函數(shù)圖像)由圖像研究指數(shù)函數(shù)的性質(zhì)。利用性質(zhì)解決實際問題。
(三、)能力:
1.通過指數(shù)函數(shù)的圖像和性質(zhì)的研究,培養(yǎng)學(xué)生觀察,分析和歸納的能力,進一步體會數(shù)形結(jié)合的思想方法。
2.通過對指數(shù)函數(shù)的研究,使學(xué)生能把握函數(shù)研究的基本方法。
五、教學(xué)過程:
由實際問題引入:
問題1:某種細(xì)胞分裂時,由1個分裂成2個,2個分裂成4個,?1個這樣的細(xì)胞分裂x次后,得到的細(xì)胞的個數(shù)y與x之間的關(guān)系是什么?
分裂次數(shù)與細(xì)胞個數(shù)
1,2;2,2×2=22;3,2×2×2=23;????;x,2×2×……×2=2x
歸納:y=2x
問題2:某種放射性物質(zhì)不斷變化為其它物質(zhì),每經(jīng)過1年剩留的這種物質(zhì)是原來的84%,那么經(jīng)過x年后剩留量y與x的關(guān)系是什么?
經(jīng)過1年,剩留量y=1×84%=0.841;經(jīng)過2年,剩留量y=0.84×0.84=0.842????經(jīng)過x年,剩留量y=0.84x
尋找異同:
你能從以上的兩個例子中得到的關(guān)系式里找到什么異同點嗎?
共同點:變量x與y構(gòu)成函數(shù)關(guān)系式,是指數(shù)的形式,自變量在指數(shù)位置,底數(shù)是常數(shù);不同點:底數(shù)的取值不同。
那么,今天我們來學(xué)習(xí)一個新的基本函數(shù):指數(shù)函數(shù)
得到指數(shù)函數(shù)的定義:定義:形如y=ax(a>0且a≠1)的函數(shù)叫做指數(shù)函數(shù)。
在以前我們學(xué)過的函數(shù)中,一次函數(shù)用形如y=kx+b(k≠0)的形式表示,反比例函數(shù)用形如y=k/x(k≠0)表示,二次函數(shù)y=ax2+bx+c(a≠0)表示。對于其一般形式上的系數(shù)都有相應(yīng)的限制。問:為什么指數(shù)函數(shù)對底數(shù)有這樣的要求呢?
若a=0,當(dāng)x>0時,恒等于0,沒有研究價值 當(dāng)x≤0時,無意義。
若a<0,當(dāng)x=1/2,1/4???時是無意義的,沒有研究價值。
若a=1,則=1,是一個常量,也沒有研究的必要。
所以有規(guī)定且a>0且a≠1。
由定義,我們可以對指數(shù)函數(shù)有一初步熟悉。
進一步理解函數(shù)的定義:
指數(shù)函數(shù)的定義域:在我們學(xué)過的指數(shù)運算中,指數(shù)可以是有理數(shù),當(dāng)指數(shù)是無理數(shù)時,也是一個確定的實數(shù),對于無理數(shù),學(xué)過的有理指數(shù)冪的性質(zhì)和運算法則都適用,所以指數(shù)函數(shù)的定義域為R.研究函數(shù)的途徑:由函數(shù)的圖像及性質(zhì),從形與數(shù)兩方面研究。
學(xué)習(xí)函數(shù)的一個很重要的目標(biāo)就是應(yīng)用,那么首先要對函數(shù)作一研究,研究函數(shù)的圖像及性質(zhì),然后利用其圖像性質(zhì)去解決數(shù)學(xué)問題和實際問題。根據(jù)以往的經(jīng)驗,你會從那幾個角度考慮?(圖像的分布范圍,圖像的變化趨勢,?)圖像的分布情況與函數(shù)的定義域,值域有關(guān),函數(shù)的變化趨勢體現(xiàn)函數(shù)的單調(diào)性。引導(dǎo)學(xué)生從定義域,值域,單調(diào)性,奇偶性,與坐標(biāo)軸的交點情況著手開始。
首先我們做出指數(shù)函數(shù)的圖像,我們研究一般性的事物,常用的方法是:由特殊到一般。我們以具體函數(shù)入手,讓學(xué)生以小組形式取不同底數(shù)的指數(shù)函數(shù)畫它們的圖像,將學(xué)生畫的函數(shù)圖像展示,(畫函數(shù)的圖像的步驟是:列表,描點,連線。)。
最后,老師在黑板(電腦)上演示列表,描點,連線的過程,并且,畫出取不同的值時,函數(shù)的圖像。
要求學(xué)生描述出指數(shù)函數(shù)圖像的特征,并試著描述出性質(zhì)。
數(shù)學(xué)發(fā)展的歷史表明,每一個重要的數(shù)學(xué)概念的形成和發(fā)展,其中都有豐富的經(jīng)歷,新課程較好的體現(xiàn)了這點。對新課程背景下的學(xué)生而言,數(shù)學(xué)的知識應(yīng)該是一個數(shù)學(xué)化的過程,即通過對常識材料進行細(xì)致的觀察、思考,借助于分析、比較、綜合、抽象、概括等思維活動,對常識材料進行去粗取精、去偽存真的精加工。該案例正是從數(shù)學(xué)研究和數(shù)學(xué)實驗的過程中進行設(shè)計。雖然學(xué)生的思維不一定真實的重演了人類對數(shù)學(xué)知識探索的全過程,但確確實實通過實驗、觀察、比較、分析、歸納、抽象、概括等思維活動,在探索中將數(shù)學(xué)數(shù)學(xué)化,從而才使學(xué)生對數(shù)學(xué)學(xué)習(xí)產(chǎn)生了樂趣,對數(shù)學(xué)的研究方法有了一定的了解。
雖然學(xué)生要學(xué)的數(shù)學(xué)是歷史上前人已建構(gòu)好了的,但對他們而言,仍是全新的、未知的,需要用他們自己的學(xué)習(xí)活動來再現(xiàn)類似的過程。該案例正是從創(chuàng)設(shè)問題情景作為教學(xué)設(shè)計的重要的內(nèi)容之一。教師應(yīng)該把教學(xué)設(shè)計成學(xué)生動手操作、觀察猜想、揭示規(guī)律等一系列過程,側(cè)重于學(xué)生的探索、分析與思考,側(cè)重于過程的探究及在此過程中所形成的一般數(shù)學(xué)能力。教師的地位應(yīng)由主導(dǎo)者轉(zhuǎn)變?yōu)橐龑?dǎo)者,使教學(xué)活動真正成為學(xué)生的活動。在教學(xué)過程中,把學(xué)習(xí)的主動權(quán)交給學(xué)生,在時間和空間上保證學(xué)生在教師的指導(dǎo)下,學(xué)生能自己獨立自主的探究學(xué)習(xí)。使教學(xué)活動始終處于學(xué)生的“最近發(fā)展區(qū)”,使每一個學(xué)生通過自己的努力,在自己原有的基礎(chǔ)上都有所獲,都有提高。
總之,通過案例研究,不斷研究新教材、新理念,不斷調(diào)整教學(xué)策略優(yōu)化課堂教學(xué),培養(yǎng)學(xué)生探究學(xué)習(xí)與創(chuàng)新學(xué)習(xí)能力將是我們在數(shù)學(xué)教學(xué)中要繼續(xù)探究的課題。
第三篇:高中數(shù)學(xué)教學(xué)案例模版
案例模版
1、教學(xué)設(shè)計背景
2、教學(xué)設(shè)計思路
2.1設(shè)計理念
2.2教學(xué)重點與難點
2.3學(xué)法與教學(xué)用具
3、課堂教學(xué)實錄
3.1新課導(dǎo)入
3.2獨學(xué)、對學(xué)、群學(xué)
3.3課堂展示
3.4課堂作業(yè)
4、教學(xué)反思
5、教學(xué)評析
第四篇:高中數(shù)學(xué)教學(xué)案例
教學(xué)精細(xì)化管理有三個層面的涵義。
1.“細(xì)”,即管理覆蓋的教學(xué)環(huán)節(jié)要全。在計劃制定、個人備課、集體備課、上課、課后反思、輔導(dǎo)、測試、反饋、總結(jié)和教學(xué)評價等各環(huán)節(jié)都要制定規(guī)章,不可或缺。只有關(guān)注每個環(huán)節(jié)、每個細(xì)節(jié),才不至于影響系統(tǒng)整體功能的發(fā)揮。
2.“精”,即管理工作要突出重點。學(xué)校要根據(jù)實際確定每個時期的教學(xué)管理工作重點,重點工作重點做,才能把握住方向,才能立竿見影出效益。不分主次地平均用力往往事倍功半。
3.“精細(xì)化管理”要制度化,落實要到位。有制度不落實等于沒制度,落實不堅決、不堅持,也不出效益。
情境教學(xué),即構(gòu)建一個以情境為基礎(chǔ),學(xué)生在學(xué)習(xí)中成為提出問題和解決問題的主體,使教學(xué)過程成為學(xué)生主動獲取知識、發(fā)展能力、體驗數(shù)學(xué)的過程?!罢叶ɡ怼笔侨罩破胀ǜ呒壷袑W(xué)教科書(試驗修訂本)數(shù)學(xué)第一冊(下)的教學(xué)內(nèi)容之一,既是初中“解直角三角形”內(nèi)容的直接延伸,也是三角函數(shù)一般知識和平面向量知識在三角形中的具體運用,是解可轉(zhuǎn)化為三角形計算問題的其它數(shù)學(xué)問題及生產(chǎn)、生活實際問題的重要工具,因此具有廣泛的應(yīng)用價值。本次課的主要任務(wù)是引入并證明正弦定理,我們希望通過本課題探索情境教學(xué)在高中數(shù)學(xué)教學(xué)中的應(yīng)用方法和效果。
一、教學(xué)設(shè)計
1、創(chuàng)設(shè)一個現(xiàn)實問題情境作為提出問題的背景;
2、啟發(fā)、引導(dǎo)學(xué)生提出自己關(guān)心的現(xiàn)實問題,逐步將現(xiàn)實問題轉(zhuǎn)化、抽象成過渡性數(shù)學(xué)問題,解決過渡性問題時需要使用正弦定理,借此引發(fā)學(xué)生的認(rèn)知沖突,揭示解斜三角形的必要性,并使學(xué)生產(chǎn)生進一步探索解決問題的動機。然后引導(dǎo)學(xué)生抓住問題的數(shù)學(xué)實質(zhì),將過渡性問題引伸成一般的數(shù)學(xué)問題:已知三角形的兩條邊和一邊的對角,求另一邊的對角及第三邊。解決這兩個問題需要先回答目標(biāo)問題:在三角形中,兩邊與它們的對角之間有怎樣的關(guān)系?
3、為了解決提出的目標(biāo)問題,引導(dǎo)學(xué)生回到他們所熟悉的直角三角形中,得出目標(biāo)問題在直角三角形中的解,從而形成猜想,然后引導(dǎo)學(xué)生對猜想進行驗證。
二、教學(xué)過程
1、設(shè)置情境
利用投影展示:一條河的兩岸平行,河寬d=1km,因上游突發(fā)洪水,在洪峰到來之前,急需將碼頭A處囤積的重要物資及人員用船轉(zhuǎn)運到正對岸的碼頭B處或其下游1 km的碼頭C處。已知船在靜水中的速度∣vl∣= 5 km∕h,水流速度∣v2∣=3 km∕h。
2、提出問題
師:為了確定轉(zhuǎn)運方案,請同學(xué)們設(shè)身處地地考慮一下有關(guān)的問題,將各自的問題經(jīng)小組(前后4人為一小組)匯總整理后交給我。
待各小組將題紙交給老師后,老師篩選幾張有代表性的題紙通過投影向全班展示,經(jīng)大家歸納整理后得到如下的5個問題:
(l)船應(yīng)開往B處還是C處?
(2)船從A開到B、C分別需要多少時間?(3)船從A到B、C的距離分別是多少?
(4)船從A到B、C時的速度大小分別是多少?(5)船應(yīng)向什么方向開,才能保證沿直線到達B、C? 師:大家討論一下,應(yīng)該怎樣解決上述問題?
大家經(jīng)過討論達成如下共識:要回答問題(l),需要解決問題(2),要解決問題(2),需要先解決問題(3)和(4),問題(3)用直角三角形知識可解,所以重點是解決問題(4),問題(4)與問題(5)是兩個相關(guān)問題,因此,解決上述問題的關(guān)鍵是解決問題(4)和(5)。
師:請同學(xué)們根據(jù)平行四邊形法則,先在練習(xí)本上做出與問題對應(yīng)的示意圖,明確已知什么,要求什么,怎樣求解。
生:船從A開往B的情況如圖2,根據(jù)平行四邊形的性質(zhì)及解直角三角形的知識,可求得船在河水中的速度大小∣v∣及vl與v2的夾角θ:
生:船從A開往C的情況如圖3,∣AD∣=∣v1∣= 5,∣DE∣=∣AF∣=∣v2∣=3,易求得∠AED = ∠EAF = 450,還需求θ及v。我不知道怎樣解這兩個問題,因為以前從未解過類似的問題。
師:請大家想一下,這兩個問題的數(shù)學(xué)實質(zhì)是什么?
部分學(xué)生:在三角形中,已知兩邊和其中一邊的對角,求另一邊的對角和第三邊。師:請大家討論一下,如何解決這兩個問題?
生:在已知條件下,若能知道三角形中兩條邊與其對角這4個元素之間的數(shù)量關(guān)系,則可以解決上述問題,求出另一邊的對角。
生:如果另一邊的對角已經(jīng)求出,那么第三個角也能夠求出。只要能知道三角形中兩條邊與其對角這4個元素的數(shù)量關(guān)系,則第三邊也可求出。
生:在已知條件下,如果能知道三角形中三條邊和一個角這4個元素之間的數(shù)量關(guān)系,也能求出第三邊和另一邊的對角。
師:同學(xué)們的設(shè)想很好,只要能知道三角形中兩邊與它們的對角間的數(shù)量關(guān)系,或者三條邊與一個角間的數(shù)量關(guān)系,則兩個問題都能夠順利解決。下面我們先來解答問題:三角形中,任意兩邊與其對角之間有怎樣的數(shù)量關(guān)系?
3、解決問題
師:請同學(xué)們想一想,我們以前遇到這種一般問題時,是怎樣處理的? 眾學(xué)生:先從特殊事例入手,尋求答案或發(fā)現(xiàn)解法。直角三角形是三角形的特例,可以先在直角三角形中試探一下。
師:請各小組研究在Rt△ABC中,任意兩邊及其對角這4個元素間有什么關(guān)系?
多數(shù)小組很快得出結(jié)論:a/sinA = b/sinB = c/sinC。師:a/sinA = b/sinB = c/sinC在非Rt△ABc中是否成立?
眾學(xué)生:不一定,可以先用具體例子檢驗。若有一個不成立,則否定結(jié)論;若都成立,則說明這個結(jié)論很可能成立,再想辦法進行嚴(yán)格的證明。
師:這是個好主意。請每個小組任意做出一個非Rt△ABC,用量角器和刻度尺量出各邊的長和各角的大小,用計算器作為計算工具,具體檢驗一下,然后報告檢驗結(jié)果。
幾分鐘后,多數(shù)小組報告結(jié)論成立,只有一個小組因測量和計算誤差,得出否定的結(jié)論。教師在引導(dǎo)學(xué)生找出失誤的原因后指出:此關(guān)系式在任意△ABC中都能成立,請大家先考慮一下證明思路。
生:想法將問題轉(zhuǎn)化成直角三角形中的問題進行解決。
生:因為要證明的是一個等式,所以應(yīng)先找到一個可以作為證明基礎(chǔ)的等量關(guān)系。
師:在三角形中有哪些可以作為證明基礎(chǔ)的等量關(guān)系呢? 學(xué)生七嘴八舌地說出一些等量關(guān)系,經(jīng)討論后確定如下一些與直角三角形有關(guān)的等量關(guān)系可能有利用價值:
1、三角形的面積不變;
2、三角形同一邊上的高不變;
3、三角形外接圓直徑不變。
師:據(jù)我所知,從AC+CB=AB出發(fā),也能證得結(jié)論,請大家討論一下。生:要想辦法將向量關(guān)系轉(zhuǎn)化成數(shù)量關(guān)系。
生:利用向量的數(shù)量積運算可將向量關(guān)系轉(zhuǎn)化成數(shù)量關(guān)系。生:還要想辦法將有三個項的關(guān)系式轉(zhuǎn)化成兩個項的關(guān)系式。
生:因為兩個垂直向量的數(shù)量積為0,可考慮選一個與三個向量中的一個向量(如向量AC)垂直的向量與向量等式的兩邊分別作數(shù)量積。
師:同學(xué)們通過自己的努力,發(fā)現(xiàn)并證明了正弦定理。正弦定理揭示了三角形中任意兩邊與其對角的關(guān)系,請大家留意身邊的事例,正弦定理能夠解決哪些問題。
三、教學(xué)總結(jié)
在本課的教學(xué)中,教師立足于所創(chuàng)設(shè)的情境,通過學(xué)生自主探索、合作交流,親身經(jīng)歷了提出問題、解決問題、應(yīng)用反思的過程,學(xué)生成為正弦定理的“發(fā)現(xiàn)者”和“創(chuàng)造者”,切身感受了創(chuàng)造的苦和樂,知識目標(biāo)、能力目標(biāo)、情感目標(biāo)均得到了較好的落實。
創(chuàng)設(shè)數(shù)學(xué)情境是這種教學(xué)模式的基礎(chǔ)環(huán)節(jié),教師必須對學(xué)生的身心特點、知識水平、教學(xué)內(nèi)容、教學(xué)目標(biāo)等因素進行綜合考慮,對可用的情境進行比較,選擇具有較好的教育功能的情境。這種教學(xué)模式主張以問題為連線組織教學(xué)活動,以學(xué)生作為提出問題的主體,因此,如何引導(dǎo)學(xué)生提出問題是教學(xué)成敗的關(guān)鍵。教學(xué)實驗表明,學(xué)生能否提出數(shù)學(xué)問題,不僅受其數(shù)學(xué)基礎(chǔ)、生活經(jīng)歷、學(xué)習(xí)方式等自身因素的影響,還受其所處的環(huán)境、教師對提問的態(tài)度等外在因素的制約。因此,教師不僅要注重創(chuàng)設(shè)適宜的數(shù)學(xué)情境,而且要真正轉(zhuǎn)變對學(xué)生提問的態(tài)度,提高引導(dǎo)水平,一方面要鼓勵學(xué)生大膽地提出問題,另一方面要妥善處理學(xué)生提出的問題。教師還要積極引導(dǎo)學(xué)生對所提的問題進行分析、整理,篩選出有價值的問題,注意啟發(fā)學(xué)生揭示問題的數(shù)學(xué)實質(zhì),將提問引向深入。
教學(xué)精細(xì)化管理有三個層面的涵義。1.“細(xì)”,即管理覆蓋的教學(xué)環(huán)節(jié)要全。在計劃制定、個人備課、集體備課、上課、課后反思、輔導(dǎo)、測試、反饋、總結(jié)和教學(xué)評價等各環(huán)節(jié)都要制定規(guī)章,不可或缺。只有關(guān)注每個環(huán)節(jié)、每個細(xì)節(jié),才不至于影響系統(tǒng)整體功能的發(fā)揮。
2.“精”,即管理工作要突出重點。學(xué)校要根據(jù)實際確定每個時期的教學(xué)管理工作重點,重點工作重點做,才能把握住方向,才能立竿見影出效益。不分主次地平均用力往往事倍功半。
3.“精細(xì)化管理”要制度化,落實要到位。有制度不落實等于沒制度,落實不堅決、不堅持,也不出效益。
情境教學(xué),即構(gòu)建一個以情境為基礎(chǔ),學(xué)生在學(xué)習(xí)中成為提出問題和解決問題的主體,使教學(xué)過程成為學(xué)生主動獲取知識、發(fā)展能力、體驗數(shù)學(xué)的過程。“正弦定理”是全日制普通高級中學(xué)教科書(試驗修訂本)數(shù)學(xué)第一冊(下)的教學(xué)內(nèi)容之一,既是初中“解直角三角形”內(nèi)容的直接延伸,也是三角函數(shù)一般知識和平面向量知識在三角形中的具體運用,是解可轉(zhuǎn)化為三角形計算問題的其它數(shù)學(xué)問題及生產(chǎn)、生活實際問題的重要工具,因此具有廣泛的應(yīng)用價值。本次課的主要任務(wù)是引入并證明正弦定理,我們希望通過本課題探索情境教學(xué)在高中數(shù)學(xué)教學(xué)中的應(yīng)用方法和效果。
一、教學(xué)設(shè)計
1、創(chuàng)設(shè)一個現(xiàn)實問題情境作為提出問題的背景;
2、啟發(fā)、引導(dǎo)學(xué)生提出自己關(guān)心的現(xiàn)實問題,逐步將現(xiàn)實問題轉(zhuǎn)化、抽象成過渡性數(shù)學(xué)問題,解決過渡性問題時需要使用正弦定理,借此引發(fā)學(xué)生的認(rèn)知沖突,揭示解斜三角形的必要性,并使學(xué)生產(chǎn)生進一步探索解決問題的動機。然后引導(dǎo)學(xué)生抓住問題的數(shù)學(xué)實質(zhì),將過渡性問題引伸成一般的數(shù)學(xué)問題:已知三角形的兩條邊和一邊的對角,求另一邊的對角及第三邊。解決這兩個問題需要先回答目標(biāo)問題:在三角形中,兩邊與它們的對角之間有怎樣的關(guān)系?
3、為了解決提出的目標(biāo)問題,引導(dǎo)學(xué)生回到他們所熟悉的直角三角形中,得出目標(biāo)問題在直角三角形中的解,從而形成猜想,然后引導(dǎo)學(xué)生對猜想進行驗證。
二、教學(xué)過程
1、設(shè)置情境 利用投影展示:一條河的兩岸平行,河寬d=1km,因上游突發(fā)洪水,在洪峰到來之前,急需將碼頭A處囤積的重要物資及人員用船轉(zhuǎn)運到正對岸的碼頭B處或其下游1 km的碼頭C處。已知船在靜水中的速度∣vl∣= 5 km∕h,水流速度∣v2∣=3 km∕h。
2、提出問題
師:為了確定轉(zhuǎn)運方案,請同學(xué)們設(shè)身處地地考慮一下有關(guān)的問題,將各自的問題經(jīng)小組(前后4人為一小組)匯總整理后交給我。
待各小組將題紙交給老師后,老師篩選幾張有代表性的題紙通過投影向全班展示,經(jīng)大家歸納整理后得到如下的5個問題:
(l)船應(yīng)開往B處還是C處?
(2)船從A開到B、C分別需要多少時間?(3)船從A到B、C的距離分別是多少?
(4)船從A到B、C時的速度大小分別是多少?(5)船應(yīng)向什么方向開,才能保證沿直線到達B、C? 師:大家討論一下,應(yīng)該怎樣解決上述問題?
大家經(jīng)過討論達成如下共識:要回答問題(l),需要解決問題(2),要解決問題(2),需要先解決問題(3)和(4),問題(3)用直角三角形知識可解,所以重點是解決問題(4),問題(4)與問題(5)是兩個相關(guān)問題,因此,解決上述問題的關(guān)鍵是解決問題(4)和(5)。
師:請同學(xué)們根據(jù)平行四邊形法則,先在練習(xí)本上做出與問題對應(yīng)的示意圖,明確已知什么,要求什么,怎樣求解。
生:船從A開往B的情況如圖2,根據(jù)平行四邊形的性質(zhì)及解直角三角形的知識,可求得船在河水中的速度大小∣v∣及vl與v2的夾角θ:
生:船從A開往C的情況如圖3,∣AD∣=∣v1∣= 5,∣DE∣=∣AF∣=∣v2∣=3,易求得∠AED = ∠EAF = 450,還需求θ及v。我不知道怎樣解這兩個問題,因為以前從未解過類似的問題。
師:請大家想一下,這兩個問題的數(shù)學(xué)實質(zhì)是什么?
部分學(xué)生:在三角形中,已知兩邊和其中一邊的對角,求另一邊的對角和第三邊。
師:請大家討論一下,如何解決這兩個問題? 生:在已知條件下,若能知道三角形中兩條邊與其對角這4個元素之間的數(shù)量關(guān)系,則可以解決上述問題,求出另一邊的對角。
生:如果另一邊的對角已經(jīng)求出,那么第三個角也能夠求出。只要能知道三角形中兩條邊與其對角這4個元素的數(shù)量關(guān)系,則第三邊也可求出。
生:在已知條件下,如果能知道三角形中三條邊和一個角這4個元素之間的數(shù)量關(guān)系,也能求出第三邊和另一邊的對角。
師:同學(xué)們的設(shè)想很好,只要能知道三角形中兩邊與它們的對角間的數(shù)量關(guān)系,或者三條邊與一個角間的數(shù)量關(guān)系,則兩個問題都能夠順利解決。下面我們先來解答問題:三角形中,任意兩邊與其對角之間有怎樣的數(shù)量關(guān)系?
3、解決問題
師:請同學(xué)們想一想,我們以前遇到這種一般問題時,是怎樣處理的? 眾學(xué)生:先從特殊事例入手,尋求答案或發(fā)現(xiàn)解法。直角三角形是三角形的特例,可以先在直角三角形中試探一下。
師:請各小組研究在Rt△ABC中,任意兩邊及其對角這4個元素間有什么關(guān)系?
多數(shù)小組很快得出結(jié)論:a/sinA = b/sinB = c/sinC。師:a/sinA = b/sinB = c/sinC在非Rt△ABc中是否成立?
眾學(xué)生:不一定,可以先用具體例子檢驗。若有一個不成立,則否定結(jié)論;若都成立,則說明這個結(jié)論很可能成立,再想辦法進行嚴(yán)格的證明。
師:這是個好主意。請每個小組任意做出一個非Rt△ABC,用量角器和刻度尺量出各邊的長和各角的大小,用計算器作為計算工具,具體檢驗一下,然后報告檢驗結(jié)果。
幾分鐘后,多數(shù)小組報告結(jié)論成立,只有一個小組因測量和計算誤差,得出否定的結(jié)論。教師在引導(dǎo)學(xué)生找出失誤的原因后指出:此關(guān)系式在任意△ABC中都能成立,請大家先考慮一下證明思路。
生:想法將問題轉(zhuǎn)化成直角三角形中的問題進行解決。
生:因為要證明的是一個等式,所以應(yīng)先找到一個可以作為證明基礎(chǔ)的等量關(guān)系。
師:在三角形中有哪些可以作為證明基礎(chǔ)的等量關(guān)系呢? 學(xué)生七嘴八舌地說出一些等量關(guān)系,經(jīng)討論后確定如下一些與直角三角形有關(guān)的等量關(guān)系可能有利用價值:
1、三角形的面積不變;
2、三角形同一邊上的高不變;
3、三角形外接圓直徑不變。
師:據(jù)我所知,從AC+CB=AB出發(fā),也能證得結(jié)論,請大家討論一下。生:要想辦法將向量關(guān)系轉(zhuǎn)化成數(shù)量關(guān)系。
生:利用向量的數(shù)量積運算可將向量關(guān)系轉(zhuǎn)化成數(shù)量關(guān)系。生:還要想辦法將有三個項的關(guān)系式轉(zhuǎn)化成兩個項的關(guān)系式。
生:因為兩個垂直向量的數(shù)量積為0,可考慮選一個與三個向量中的一個向量(如向量AC)垂直的向量與向量等式的兩邊分別作數(shù)量積。
師:同學(xué)們通過自己的努力,發(fā)現(xiàn)并證明了正弦定理。正弦定理揭示了三角形中任意兩邊與其對角的關(guān)系,請大家留意身邊的事例,正弦定理能夠解決哪些問題。
三、教學(xué)總結(jié)
在本課的教學(xué)中,教師立足于所創(chuàng)設(shè)的情境,通過學(xué)生自主探索、合作交流,親身經(jīng)歷了提出問題、解決問題、應(yīng)用反思的過程,學(xué)生成為正弦定理的“發(fā)現(xiàn)者”和“創(chuàng)造者”,切身感受了創(chuàng)造的苦和樂,知識目標(biāo)、能力目標(biāo)、情感目標(biāo)均得到了較好的落實。
創(chuàng)設(shè)數(shù)學(xué)情境是這種教學(xué)模式的基礎(chǔ)環(huán)節(jié),教師必須對學(xué)生的身心特點、知識水平、教學(xué)內(nèi)容、教學(xué)目標(biāo)等因素進行綜合考慮,對可用的情境進行比較,選擇具有較好的教育功能的情境。這種教學(xué)模式主張以問題為連線組織教學(xué)活動,以學(xué)生作為提出問題的主體,因此,如何引導(dǎo)學(xué)生提出問題是教學(xué)成敗的關(guān)鍵。教學(xué)實驗表明,學(xué)生能否提出數(shù)學(xué)問題,不僅受其數(shù)學(xué)基礎(chǔ)、生活經(jīng)歷、學(xué)習(xí)方式等自身因素的影響,還受其所處的環(huán)境、教師對提問的態(tài)度等外在因素的制約。因此,教師不僅要注重創(chuàng)設(shè)適宜的數(shù)學(xué)情境,而且要真正轉(zhuǎn)變對學(xué)生提問的態(tài)度,提高引導(dǎo)水平,一方面要鼓勵學(xué)生大膽地提出問題,另一方面要妥善處理學(xué)生提出的問題。教師還要積極引導(dǎo)學(xué)生對所提的問題進行分析、整理,篩選出有價值的問題,注意啟發(fā)學(xué)生揭示問題的數(shù)學(xué)實質(zhì),將提問引向深入。
第五篇:高中數(shù)學(xué)教學(xué)反思案例
高中數(shù)學(xué)教學(xué)反思案例
篇一:高中數(shù)學(xué)>教學(xué)反思案例
一、對數(shù)學(xué)概念教學(xué)的一點反思
對于學(xué)生來說,學(xué)習(xí)數(shù)學(xué)的一個重要目的是要學(xué)會數(shù)學(xué)的思考,用數(shù)學(xué)的眼光去看世界,去了解世界。而對于數(shù)學(xué)教師來說,他還要從“教”的角度去看數(shù)學(xué)去挖掘數(shù)學(xué),他不僅要能“做”、“會理解”,還應(yīng)當(dāng)能夠教會別人去“做”、去“理解”,因此教師對教學(xué)概念的反思應(yīng)當(dāng)從邏輯的、歷史的、辨證的等方面去展開。
下面以函數(shù)為例:
1、從邏輯的角度看,函數(shù)概念主要包含定義域、值域、對應(yīng)法則三要素,以及函數(shù)的單調(diào)性、奇偶性、周期性、對稱性等性質(zhì)和一些具體的特殊函數(shù),如:指數(shù)函數(shù)、對數(shù)函數(shù)等這些內(nèi)容是函數(shù)教學(xué)的基礎(chǔ),但不是函數(shù)的全部。
2、從關(guān)系的角度來看,不僅函數(shù)的主要內(nèi)容之間存在著種種實質(zhì)性的聯(lián)系,函數(shù)與其他中學(xué)數(shù)學(xué)內(nèi)容也有著密切的聯(lián)系。方程的根可以作為函數(shù)的圖象與軸交點的橫坐標(biāo);不等式的解就是函數(shù)的圖象在軸上方的那一部分所對應(yīng)的橫坐標(biāo)的集合;數(shù)列也就是定義在自然數(shù)集合上的函數(shù);同樣的幾何內(nèi)容也與函數(shù)有著密切的聯(lián)系。??
教師在教學(xué)生是不能把他們看著“空的容器”,按照自己的意思往這些“空的容器”里“灌輸數(shù)學(xué)”這樣常常會進入誤區(qū),因為師生之間在數(shù)學(xué)知識、數(shù)學(xué)活動經(jīng)驗、興趣愛好、社會生活閱歷等方面存在很大的差異,這些差異使得他們對同一個教學(xué)活動的感覺通常是不一樣的。要想多“制造”一些供課后反思的數(shù)學(xué)學(xué)習(xí)素材,一個比較有效的方式就是在教學(xué)過程中盡可能多的把學(xué)生頭腦中問題“擠”出來,使他們解決問題的思維過程暴露出來。
二。對>數(shù)學(xué)教學(xué)方法的幾點啟示
本人從事高中數(shù)學(xué)教學(xué)工作將近30年的時間了。在新課程背景下,如何有效利用課堂教學(xué)時間,如何盡可能地提高學(xué)生的學(xué)習(xí)興趣,提高學(xué)生在課堂上40分鐘的學(xué)習(xí)效率,這對于剛接觸高中新課改教學(xué)的我來說,也是一個很重要的課題。要搞好高中數(shù)學(xué)新課改,首先要對新課標(biāo)和新教材有整體的把握和認(rèn)識,這樣才能將知識系統(tǒng)化,注意知識前后的聯(lián)系,形成知識框架;其次要了解學(xué)生的現(xiàn)狀和認(rèn)知結(jié)構(gòu),了解學(xué)生此階段的知識水平,以便因材施教;再次要處理好課堂教學(xué)中教師的教和學(xué)生的學(xué)的關(guān)系。課堂教學(xué)是實施高中新課程教學(xué)的主陣地,也是對學(xué)生進行思想品德教育和>素質(zhì)教育的主渠道。課堂教學(xué)不但要加強雙基而且要提高智力,要發(fā)展學(xué)生的創(chuàng)造力;不但要讓學(xué)生學(xué)會,而且要讓學(xué)生會學(xué),特別是自學(xué)。尤其是在課堂上,不但要發(fā)展學(xué)生的智力因素,而且要提高學(xué)生在課堂40分鐘的學(xué)習(xí)效率,在有限的時間里,出色地完成教學(xué)任務(wù),不能穿新鞋走老路。
1、要有明確的教學(xué)目標(biāo)
教學(xué)目標(biāo)分為三大目標(biāo),即認(rèn)知目標(biāo)、情感目標(biāo)和動作技能目標(biāo)。因此,在備課時要圍繞這些目標(biāo)選擇教學(xué)的策略、方法和媒體,把內(nèi)容進行必要的重組。備課時要依據(jù)教材,但又不拘泥于教材,靈活運用教材。在數(shù)學(xué)教學(xué)中,要通過師生的共同努力,使學(xué)生在知識、能力、技能、心理、思想品德等方面達到預(yù)定的目標(biāo),以提高學(xué)生的綜合素質(zhì)。
2、要能突出重點、化解難點
每一堂課都要有教學(xué)重點,而整堂的教學(xué)都是圍繞著教學(xué)重點來逐步展開的。為了讓學(xué)生明確本堂課的重點、難點,教師在上課開始時,可以在黑板的一角將這些內(nèi)容簡短地寫出來,以便引起學(xué)生的重視。講授重點內(nèi)容,是整堂課的教學(xué)高潮。教師要通過聲音、手勢、板書等的變化或應(yīng)用模型、投影儀等直觀教具,刺激學(xué)生的大腦,使學(xué)生能夠興奮起來,適當(dāng)?shù)剡€可以插入與此類知識有關(guān)的笑話,對所學(xué)內(nèi)容在大腦中刻下強烈的印象,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生對新知識的接受能力。尤其是在選擇例題時,例題最好是呈階梯式展現(xiàn),我在準(zhǔn)備一堂課時,通常是將一節(jié)或一章的題目先做完,再針對本節(jié)的知識內(nèi)容選擇相關(guān)題目,往往每節(jié)課都涉及好幾種題型。
3、要善于應(yīng)用現(xiàn)代化教學(xué)手段
在新課標(biāo)和新教材的背景下,教師掌握現(xiàn)代化的多媒體教學(xué)手段顯得尤為重要和迫切?,F(xiàn)代化教學(xué)手段的顯著特點:一是能有效地增大每一堂課的課容量,從而把原來40分鐘的內(nèi)容在35分鐘中就加以解決;二是減輕教師板書的工作量,使教師能有精力講深講透所舉例子,提高講解效率;三是直觀性強,容易激發(fā)起學(xué)生的學(xué)習(xí)興趣,有利于提高學(xué)生的學(xué)習(xí)主動性;四是有利于對整堂課所學(xué)內(nèi)容進行回顧和小結(jié)。在課堂教學(xué)結(jié)束時,教師引導(dǎo)學(xué)生總結(jié)本堂課的內(nèi)容,學(xué)習(xí)的重點和難點。同時通過投影儀,同步地將內(nèi)容在瞬間躍然“幕”上,使學(xué)生進一步理解和掌握本堂課的內(nèi)容。在課堂教學(xué)中,對于板演量大的內(nèi)容,如立體幾何中的一些幾何圖形、一些簡單但數(shù)量較多的小問答題、文字量較多應(yīng)用題,復(fù)習(xí)課中章節(jié)內(nèi)容的總結(jié)、選擇題的訓(xùn)練等等都可以借助于投影儀來完成??赡艿脑?,教學(xué)可以自編電腦課件,借助電腦來生動形象地展示所教內(nèi)容。如講授正弦曲線、余弦曲線的圖形、棱錐體積公式的推導(dǎo)過程都可以用電腦來演示。
4、根據(jù)具體內(nèi)容,選擇恰當(dāng)?shù)慕虒W(xué)方法
每一堂課都有規(guī)定的教學(xué)任務(wù)和目標(biāo)要求。所謂“教學(xué)有法,但無定法”,教師要能隨著教學(xué)內(nèi)容的變化,教學(xué)對象的變化,教學(xué)設(shè)備的變化,靈活應(yīng)用教學(xué)方法。數(shù)學(xué)教學(xué)的方法很多,對于新授課,我們往往采用講授法來向?qū)W生傳授新知識。而在立體幾何中,我們還時常穿插演示法,來向?qū)W生展示幾何模型,或者驗證幾何結(jié)論。如在教授立體幾何之前,要求學(xué)生每人用鉛絲做一個立方體的幾何模型,觀察其各條棱之間的相對位置關(guān)系,各條棱與正方體對角線之間、各個側(cè)面的對角線之間所形成的角度。這樣在講授空間兩條直線之間的位置關(guān)系時,就可以通過這些幾何模型,直觀地加以說明。此外,我們還可以結(jié)合課堂內(nèi)容,靈活采用談話、讀書指導(dǎo)、作業(yè)、練習(xí)等多種教學(xué)方法。在一堂課上,有時要同時使用多種教學(xué)方法?!敖虩o定法,貴要得法”。只要能激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的學(xué)習(xí)積極性,有助于學(xué)生思維能力的培養(yǎng),有利于所學(xué)知識的掌握和運用,都是好的教學(xué)方法。
5、關(guān)愛學(xué)生,及時鼓勵
高中新課程的宗旨是著眼于學(xué)生的發(fā)展。對學(xué)生在課堂上的表現(xiàn),要及時加以總結(jié),適當(dāng)給予鼓勵,并處理好課堂的偶發(fā)事件,及時調(diào)整課堂教學(xué)。在教學(xué)過程中,教師要隨時了解學(xué)生對所講內(nèi)容的掌握情況。如在講完一個概念后,讓學(xué)生復(fù)述;講完一個例題后,將解答擦掉,請中等水平學(xué)生上臺板演。有時,對于基礎(chǔ)差的學(xué)生,可以對他們多提問,讓他們有較多的鍛煉機會,同時教師根據(jù)學(xué)生的表現(xiàn),及時進行鼓勵,培養(yǎng)他們的自信心,讓他們能熱愛數(shù)學(xué),學(xué)習(xí)數(shù)學(xué)。
6、充分發(fā)揮學(xué)生主體作用,調(diào)動學(xué)生的學(xué)習(xí)積極性
學(xué)生是學(xué)習(xí)的主體,教師要圍繞著學(xué)生展開教學(xué)。在教學(xué)過程中,自始至終讓學(xué)生唱主角,使學(xué)生變被動學(xué)習(xí)為主動學(xué)習(xí),讓學(xué)生成為學(xué)習(xí)的主人,教師成為學(xué)習(xí)的領(lǐng)路人。
在一堂課中,教師盡量少講,讓學(xué)生多動手,動腦操作,剛畢業(yè)那會,每次上課,看到學(xué)生一道題目往往要思考很久才能探究出答案,我就有點心急,每次都忍不住在他們即將做出答案的時候?qū)⒎椒ǜ嬖V他們。這樣容易造成學(xué)生對老師的依賴,不利于培養(yǎng)學(xué)生獨立思考的能力和新方法的形成。學(xué)生的思維本身就是一個資源庫,學(xué)生往往會想出我意想不到的好方法來。
7、切實重視基礎(chǔ)知識、基本技能和基本方法
眾所周知,近年來數(shù)學(xué)試題的新穎性、靈活性越來越強,不少師生把主要精力放在難度較大的綜合題上,認(rèn)為只有通過解決難題才能培養(yǎng)能力,因而相對地忽視了基礎(chǔ)知識、基本技能、基本方法的教學(xué)。教學(xué)中急急忙忙把公式、定理推證拿出來,或草草講一道例題就通過大量的題目來訓(xùn)練學(xué)生。其實定理、公式推證的過程就蘊含著重要的解題方法和規(guī)律,教師沒有充分暴露思維過程,沒有發(fā)掘其內(nèi)在的規(guī)律,就讓學(xué)生去做題,試圖通過讓學(xué)生大量地做題去“悟”出某些道理。結(jié)果是多數(shù)學(xué)生“悟”不出方法、規(guī)律,理解浮淺,記憶不牢,只會機械地模仿,思維水平較低,有時甚至生搬硬套;照葫蘆畫瓢,將簡單問題復(fù)雜化。如果教師在教學(xué)中過于粗疏或?qū)W生在學(xué)習(xí)中對基本知識不求甚解,都會導(dǎo)致在考試中判斷錯誤。不少學(xué)生說:現(xiàn)在的試題量過大,他們往往無法完成全部試卷的解答,而解題速度的快慢主要取決于基本技能、基本方法的熟練程度及能力的高低??梢?,在切實重視基礎(chǔ)知識的落實中同時應(yīng)重視基本技能和基本方法的培養(yǎng)。
8、滲透教學(xué)思想方法,培養(yǎng)綜合運用能力
常用的數(shù)學(xué)思想方法有:轉(zhuǎn)化的思想,類比歸納與類比聯(lián)想的思想,分類討論的思想,數(shù)形結(jié)合的思想以及配方法、換元法、待定系數(shù)法、反證法等。這些基本思想和方法分散地滲透在中學(xué)數(shù)學(xué)教材的條章節(jié)之中。在平時的教學(xué)中,教師要在傳授基礎(chǔ)知識的同時,有意識地、恰當(dāng)在講解與滲透基本數(shù)學(xué)思想和方法,幫助學(xué)生掌握科學(xué)的方法,從而達到傳授知識,培養(yǎng)能力的目的。只有這樣,學(xué)生才能靈活運用和綜合運用所學(xué)的知識。
總之,在新課程背景下的數(shù)學(xué)課堂教學(xué)中,要提高學(xué)生在課堂40分鐘的學(xué)習(xí)效率,要提高教學(xué)質(zhì)量,我們就應(yīng)該多思考、多準(zhǔn)備,充分做到備教材、備學(xué)生、備教法,提高自身的教學(xué)機智,發(fā)揮自身的主導(dǎo)作用。
篇二:高中數(shù)學(xué)教學(xué)反思案例
**年**月**日,我有幸參加了市局舉辦的擬晉中小學(xué)中、高級職務(wù)教師繼續(xù)教育>培訓(xùn)的學(xué)習(xí)活動,并隨后參加了中小學(xué)教師遠(yuǎn)程培訓(xùn),完成了為期12 周課程的學(xué)習(xí)任務(wù)。參加視頻會議的專家和老師,多數(shù)是來自教學(xué)一線的。在這段集中培訓(xùn)時間,每天的感覺是>幸福而又充實的,因為每一天都要面對不同風(fēng)格的專家,每一天都能聽到不同類型的講座,每一天都能感受到思想火花的沖擊。在這幾周的培訓(xùn)期間,我始終熱情高漲,積極學(xué)習(xí),聆聽專家講座;用心去領(lǐng)悟他們的觀點,吸取精華,真心探討?;仡櫯嘤?xùn)歷程的足跡,發(fā)現(xiàn)自己不僅專業(yè)方面得到了很大的提高,而且教育觀念也得到了洗禮,教育科學(xué)理論的學(xué)習(xí)得到了升華。
這次的遠(yuǎn)程培訓(xùn)經(jīng)歷使我>收獲頗多,只字片語難以盡述,通過這次培訓(xùn),在網(wǎng)絡(luò)和各位專家和學(xué)者的思想進行了碰撞,對今后教學(xué)工作有了很大啟發(fā),在這里我想談?wù)勱P(guān)于數(shù)學(xué)教學(xué)的反思。
一、強調(diào)教法、學(xué)法、教學(xué)內(nèi)容以及教學(xué)媒介的有機整合。
教學(xué)設(shè)計的難點在于教師把學(xué)術(shù)形態(tài)的知識轉(zhuǎn)化為適合學(xué)生探究的認(rèn)知形態(tài)的知識。學(xué)生的認(rèn)知結(jié)構(gòu)具有個性化特點,教學(xué)內(nèi)容具有普遍性要求。如何在一節(jié)課中把二者較好地結(jié)合起來,是提高課堂教學(xué)效率的關(guān)鍵。
對一名數(shù)學(xué)教師而言,教學(xué)反思首先是對數(shù)學(xué)概念的反思。
對數(shù)學(xué)概念的反思——學(xué)會數(shù)學(xué)的思考。對于學(xué)生來說,學(xué)習(xí)數(shù)學(xué)的一個重要目的是要學(xué)會數(shù)學(xué)的思考,用數(shù)學(xué)的眼光去看世界去了解世界。而對于數(shù)學(xué)教師來說,他還要從“ 教” 的角度去看數(shù)學(xué)去挖掘數(shù)學(xué),他不僅要能“ 做”、“ 會理解”,還應(yīng)當(dāng)能夠教會別人去“ 做”、去“ 理解”,因此教師對教學(xué)概念的反思應(yīng)當(dāng)從邏輯的、歷史的、關(guān)系、辨證等方面去展開。
以函數(shù)為例:從邏輯的角度看,函數(shù)概念主要包含定義域、值域、對應(yīng)法則三要素,以及函數(shù)的單調(diào)性、奇偶性、周期性、對稱性等性質(zhì)和一些具體的特殊函數(shù),如:指數(shù)函數(shù)、對數(shù)函數(shù)等這些內(nèi)容是函數(shù)教學(xué)的基礎(chǔ),但不是函數(shù)的全部。從關(guān)系的角度來看,不僅函數(shù)的主要內(nèi)容之間存在著種種實質(zhì)性的聯(lián)系,函數(shù)與其他中學(xué)數(shù)學(xué)內(nèi)容也有著密切的聯(lián)系:方程的根可以作為函數(shù)的圖象與軸交點的橫坐標(biāo);不等式的解就是函數(shù)的圖象在x 軸上所對應(yīng)的橫坐標(biāo)的集合;數(shù)列也就是定義在自然數(shù)集合上的函數(shù);同樣,幾何內(nèi)容也與函數(shù)有著密切的聯(lián)系。通過多角度、全方位的講解,借助多媒體輔助教學(xué),讓學(xué)生真正理解函數(shù)的概念,讓學(xué)生學(xué)會自主學(xué)習(xí),類比函數(shù)概念學(xué)不僅會對數(shù)學(xué)概念的理解和應(yīng)用,還要掌握學(xué)習(xí)數(shù)學(xué)的方法。
二、質(zhì)疑反思的培養(yǎng)通過現(xiàn)狀調(diào)查,看出在目前的數(shù)學(xué)教學(xué)中缺乏有目的、有意識,具有針對性的培養(yǎng)學(xué)生對問題的質(zhì)疑與解決問題、認(rèn)識問題后的反思。學(xué)生的質(zhì)疑反思能力是可以培養(yǎng)的,要有目的設(shè)計、訓(xùn)練。因此要培養(yǎng)質(zhì)疑反思能力必須做到:(1)明確教學(xué)目標(biāo)。要使學(xué)生由“ 學(xué)會” 轉(zhuǎn)化為“ 學(xué)會—— 會學(xué)—— 創(chuàng)新”。(2)在教學(xué)過程中要形成學(xué)生主動參與、積極探索、自覺建構(gòu)的教學(xué)過程。(3)改善教學(xué)環(huán)境。(4)優(yōu)化教學(xué)方法。
教師在教學(xué)生時,不能把他們看作“ 空的容器”,按照自己的意思往這些“ 空的容器” 里“ 灌輸數(shù)學(xué)”,這樣常常會進入誤區(qū),因為師生之間在數(shù)學(xué)知識、數(shù)學(xué)活動經(jīng)驗、興趣愛好、社會生活閱歷等方面存在很大的差異,這些差異使得他們對同一個教學(xué)活動的感覺通常是不一樣的。
要想多“ 制造” 一些供課后反思的數(shù)學(xué)學(xué)習(xí)素材,一個比較有效的方式就是在教學(xué)過程中盡可能多的把學(xué)生頭腦中問題“ 擠” 出來,使他們把解決問題的思維過程暴露出來。數(shù)學(xué)教育不僅關(guān)注學(xué)習(xí)結(jié)果,更關(guān)注結(jié)果是如何發(fā)生、發(fā)展的。從教學(xué)目標(biāo)來看,每節(jié)課都有一個最為重要的、關(guān)鍵的、處于核心地位的目標(biāo)。高中數(shù)學(xué)不少教學(xué)內(nèi)容適合于開展研究性學(xué)習(xí)。從學(xué)習(xí)的角度來看,教學(xué)組織形式是教學(xué)設(shè)計關(guān)注的一個重要問題。如果我們能充分挖掘支撐這一核心目標(biāo)的背景知識,通過選擇、利用這些背景知識組成指向本節(jié)課知識核心的、極富穿透力和啟發(fā)性的學(xué)習(xí)材料,給學(xué)生自由想象和質(zhì)疑的空間,提煉出本節(jié)課的研究主題,那么就需要我們不斷提高業(yè)務(wù)能力和水平。
三、反思教育教學(xué)是否讓不同的學(xué)生得到了不同的發(fā)展應(yīng)該怎樣對學(xué)生進行教學(xué),教師會說要因材施教??蓪嶋H教學(xué)中,又用一樣的標(biāo)準(zhǔn)去衡量每一位學(xué)生,要求每一位學(xué)生都應(yīng)該掌握哪些知識,要求每一位學(xué)生完成同樣難度的作業(yè)等等。通過這次遠(yuǎn)程培訓(xùn),我更深的從各位教育專家的講座案例中體會到,每一位學(xué)生固有的素質(zhì),學(xué)習(xí)態(tài)度,學(xué)習(xí)能力都不一樣,對學(xué)習(xí)有余力的學(xué)生要幫助他們向更高層次邁進。平時布置作業(yè)時,讓優(yōu)生做完書上的習(xí)題后,再加上兩三道有難度的題目,讓學(xué)生多多思考,提高思含量。對于學(xué)習(xí)有困難的學(xué)生,則要降低學(xué)習(xí)要求,努力達到基本要求。布置作業(yè)時,讓學(xué)困生,盡量完成書上的習(xí)題,課后習(xí)題不在家做,對于書上個別特別難的題目可以不做練習(xí)。
新課程提出教師的教要“以學(xué)生的學(xué)為中心”,教師是課堂“舞臺”上的“導(dǎo)演”,是學(xué)習(xí)數(shù)學(xué)的組織者、引導(dǎo)者與合作者,而培養(yǎng)理性思維能力是數(shù)學(xué)教育的主要目標(biāo)。但學(xué)生的日常經(jīng)驗還不能支撐全部數(shù)學(xué),因此數(shù)學(xué)教學(xué)要把隱藏在背后的理性思考激活,要把數(shù)學(xué)的文化價值點穿,幫助學(xué)生體會“驀然回首,那人卻在燈火闌珊處”的數(shù)學(xué)解題意境,學(xué)生才會喜歡數(shù)學(xué)。
此次遠(yuǎn)程培訓(xùn),讓我受益匪淺,聆聽了多位教育專家和學(xué)者的講座,我深深的感受到:教師的工作不僅是一項崇高的事業(yè),更是一項心與心交流的事業(yè)。同時對我的教學(xué)有較大的促進和影響,在數(shù)學(xué)教學(xué)中需要反思的地方很多,只有在教學(xué)過程中只有勤分析,善反思,不斷總結(jié),我們的教育教學(xué)理念和教學(xué)能力才能與時俱進。要學(xué)會在工作中學(xué)習(xí),在學(xué)習(xí)中工作!路漫漫其修遠(yuǎn)兮,吾將上下而求索!
篇三:高中數(shù)學(xué)教學(xué)反思案例
本節(jié)“直線與平面平行的判定”是學(xué)生學(xué)習(xí)空間位置關(guān)系的判定與性質(zhì)的第一節(jié)課,也是學(xué)生開始學(xué)習(xí)立幾演澤推理論述的思維方式方法,因此本節(jié)課學(xué)習(xí)對發(fā)展學(xué)生的空間觀念和邏輯思維能力是非常重要的。
本節(jié)課的設(shè)計遵循“直觀感知——操作確認(rèn)——思辯論證”的認(rèn)識過程,注重引導(dǎo)學(xué)生通過觀察、操作交流、討論、有條理的思考和推理等活動,從多角度認(rèn)識直線和平面平行的判定方法,讓學(xué)生通過自主探索、合作交流,進一步認(rèn)識和掌握空間圖形的性質(zhì),積累數(shù)學(xué)活動的經(jīng)驗,發(fā)展合情推理、發(fā)展空間觀念與推理能力。
本節(jié)課的設(shè)計注重訓(xùn)練學(xué)生準(zhǔn)確表達數(shù)學(xué)符號語言、文字語言及圖形語言,加強各種語言的互譯。比如上課開始時的復(fù)習(xí)引入,讓學(xué)生用三種語言的表達,動手實踐、定理探求過程以及定理描述也注重三種語言的表達,對例題的講解與分析也注意指導(dǎo)學(xué)生三種語言的表達。
本節(jié)課對定理的探求與認(rèn)識過程的設(shè)計始終貫徹直觀在先,感知在先,學(xué)自己身邊的數(shù)學(xué),感知生活中包涵的數(shù)學(xué)現(xiàn)象與數(shù)學(xué)原理,體驗數(shù)學(xué)即生活的道理,比如讓學(xué)生舉生活中能感知線面平行的例子,學(xué)生會舉出日光燈與天花板,電線桿與墻面,轉(zhuǎn)動的門等等,同時老師的舉例也很貼進生活,如老師直立時與四周墻面平行,而向前、向后傾斜則只與左右墻面平行,而向左、右傾斜則與前后黑板面平行。然后引導(dǎo)學(xué)生從中抽象概括出定理。
本節(jié)課對定理的運用設(shè)計了想一想、作一作、證一證、練一練等環(huán)節(jié),能從易到難,由淺入深地強化對定理的認(rèn)識,特別是對“證一證”中采用一題多解,一題多變的變式教學(xué),有利于培養(yǎng)學(xué)生思維的廣闊性與深刻性。
本節(jié)課的設(shè)計還注重了多媒體輔助教學(xué)的有效作用,在復(fù)習(xí)引入,定理的探求以及定理的運用等過程中,都有效地使用了多媒體。