欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      2019-2020學(xué)年中學(xué)高一上學(xué)期期中數(shù)學(xué)試題(解析版)

      2020-03-26 10:40:06下載本文作者:會(huì)員上傳
      簡(jiǎn)介:寫寫幫文庫(kù)小編為你整理了這篇《2019-2020學(xué)年中學(xué)高一上學(xué)期期中數(shù)學(xué)試題(解析版)》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫(kù)還可以找到更多《2019-2020學(xué)年中學(xué)高一上學(xué)期期中數(shù)學(xué)試題(解析版)》。

      2019-2020學(xué)年中學(xué)高一上學(xué)期期中數(shù)學(xué)試題

      一、單選題

      1.設(shè)集合則下列關(guān)系正確的是().A.

      B.

      C.

      D.

      【答案】B

      【解析】解一元二次方程求出集合的元素即可得出選項(xiàng).【詳解】

      因?yàn)椋獾?,所以,?故選:B

      【點(diǎn)睛】

      本題考查元素與集合的關(guān)系,屬于基礎(chǔ)題.2.已知集合中的三個(gè)元素,分別是的三邊長(zhǎng),則一定不是().

      A.銳角三角形

      B.直角三角形

      C.鈍角三角形

      D.等腰三角形

      【答案】D

      【解析】根據(jù)集合中元素的互異性,即可得到答案.

      【詳解】

      因?yàn)榧现械脑厥腔ギ惖?,所以,互不相等,即不可能是等腰三角形?/p>

      故選D.

      【點(diǎn)睛】

      本題主要考查了集合的表示方法,以及元素的基本特征,其中解答中熟記集合中元素的互異性是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于基礎(chǔ)題.

      3.集合的真子集個(gè)數(shù)是().A.8

      B.7

      C.4

      D.3

      【答案】B

      【解析】首先由,得,即可求得真子集個(gè)數(shù)為.【詳解】

      由,得,所以集合的真子集個(gè)數(shù)為

      故選:B,【點(diǎn)睛】

      本題考查集合的真子集個(gè)數(shù),解題的關(guān)鍵是求出集合的元素,若集合中的元素個(gè)數(shù)為個(gè),則真子集個(gè)數(shù)為.4.函數(shù)的定義域?yàn)椋ǎ?A.

      B.

      C.

      D.

      【答案】D

      【解析】使函數(shù)表達(dá)式有意義,即即可求解.【詳解】

      函數(shù)有意義,即解得

      故函數(shù)的定義域?yàn)?故選:D

      【點(diǎn)睛】

      本題考查函數(shù)的定義域,屬于基礎(chǔ)題.5.設(shè)函數(shù)則().A.

      B.1

      C.

      D.

      【答案】C

      【解析】首先求出,再求即可求解.【詳解】

      由函數(shù),則,所以.故選:C

      【點(diǎn)睛】

      本題考查分段函數(shù)求值,屬于基礎(chǔ)題.6.下列函數(shù)為偶函數(shù)的是()

      A.

      B.

      C.

      D.

      【答案】D

      【解析】試題分析:解:因?yàn)椴皇瞧婧瘮?shù)也不是偶函數(shù),所以選項(xiàng)A不正確;

      因?yàn)椴皇瞧婧瘮?shù)也不是偶函數(shù),所以選項(xiàng)B不正確;

      由,所以是奇函數(shù),選項(xiàng)C不正確.由,所以是偶函數(shù),選項(xiàng)D正確.故選D.【考點(diǎn)】函數(shù)奇偶性的判斷.7.已知是定義在上的奇函數(shù),且在單調(diào)遞增,若,則的取值范圍是().A.

      B.

      C.

      D.

      【答案】A

      【解析】根據(jù)是定義在上的奇函數(shù),且在單調(diào)遞增,則,解不等式即可.【詳解】

      因?yàn)槭嵌x在上的奇函數(shù),且在單調(diào)遞增,所以在上為增函數(shù),又,所以,解得,故的取值范圍為.故選:A

      【點(diǎn)睛】

      本題考查函數(shù)的性質(zhì),根據(jù)函數(shù)的性質(zhì)解不等式,屬于基礎(chǔ)題.8.設(shè)則的大小關(guān)系是()

      A.

      B.

      C.

      D.

      【答案】C

      【解析】由在區(qū)間是單調(diào)減函數(shù)可知,又,故選.【考點(diǎn)】1.指數(shù)函數(shù)的性質(zhì);2.函數(shù)值比較大小.9.已知集合按照對(duì)應(yīng)關(guān)系不能構(gòu)成從A到B的映射的是().A.

      B.

      C.

      D.

      【答案】B

      【解析】根據(jù)映射的定義,對(duì)、、、各項(xiàng)逐個(gè)加以判斷,可得、、的對(duì)應(yīng)都能構(gòu)成到的映射,只有項(xiàng)的對(duì)應(yīng)不能構(gòu)成到的映射,由此可得本題的答案.【詳解】

      A的對(duì)應(yīng)法則是,對(duì)于的任意一個(gè)元素,函數(shù)值,函數(shù)值的集合恰好是集合,且對(duì)中任意一個(gè)元素,函數(shù)值唯一確定,由此可得該對(duì)應(yīng)能構(gòu)成到的映射,故不選;

      B的對(duì)應(yīng)法則是,對(duì)于的任意一個(gè)元素,函數(shù)值,又,顯然的對(duì)應(yīng)法則不能構(gòu)成到的映射.的對(duì)應(yīng)法則是,對(duì)中任意一個(gè)元素,函數(shù)值,且對(duì)中任意一個(gè)元素,函數(shù)值唯一確定,由此可得該對(duì)應(yīng)能構(gòu)成到的映射,故不選;的對(duì)應(yīng)法則是,對(duì)中任意一個(gè)元素,函數(shù)值,且對(duì)中任意一個(gè)元素,函數(shù)值唯一確定,由此可得該對(duì)應(yīng)能構(gòu)成到的映射,故不選;

      綜上所述,只有的對(duì)應(yīng)不能構(gòu)成到的映射.故選:B

      【點(diǎn)睛】

      本題給出集合、,找出不能構(gòu)成到的映射的,著重考查了映射的定義以及其判斷,屬于基礎(chǔ)題.10.如圖的曲線是冪函數(shù)在第一象限內(nèi)的圖像.已知分別取,四個(gè)值,與曲線、、、相應(yīng)的依次為()

      A.,,B.,,C.,,D.,,【答案】A

      【解析】根據(jù)冪函數(shù)的圖像,判斷出正確選項(xiàng).【詳解】

      依題意可知,四條曲線分別表示的圖像,當(dāng)時(shí),冪函數(shù)的圖像隨著的變大而變高,故、、、相應(yīng)的依次為,,.故選:A.【點(diǎn)睛】

      本小題主要考查冪函數(shù)的圖像與性質(zhì),考查函數(shù)圖像的識(shí)別,屬于基礎(chǔ)題.11.已知函數(shù)是定義域R上的減函數(shù),則實(shí)數(shù)a的取值范圍是()

      A.

      B.

      C.

      D.

      【答案】B

      【解析】根據(jù)分段函數(shù)單調(diào)性的性質(zhì)建立不等式關(guān)系進(jìn)行求解.【詳解】

      若f(x)是定義域(-∞,+∞)上的減函數(shù),則滿足

      即,整理得.故選:B

      【點(diǎn)睛】

      本題考查了分段函數(shù)單調(diào)性的應(yīng)用,根據(jù)分段函數(shù)的性質(zhì)建立不等式是解決本題的關(guān)鍵.12.函數(shù)在區(qū)間上的最大值為4則函數(shù)的單調(diào)遞增區(qū)間是().A.

      B.

      C.

      D.

      【答案】D

      【解析】首先在區(qū)間上的最大值為4,求出,再根據(jù)復(fù)合函數(shù)的單調(diào)性在定義域能求出單調(diào)遞增區(qū)間即可.【詳解】

      因?yàn)?,開(kāi)口向上,對(duì)稱軸為,所以函數(shù)在上單調(diào)遞增,故,即,故為增函數(shù)

      令,開(kāi)口向上,對(duì)稱軸為

      解得或,所以在為增函數(shù),由復(fù)合函數(shù)的單調(diào)性可知的單調(diào)遞增區(qū)間為.故選:D

      【點(diǎn)睛】

      本題考查復(fù)合函數(shù)的單調(diào)性,復(fù)合函數(shù)的單調(diào)性法則為“同增異減”,注意在定義域內(nèi)求單調(diào)區(qū)間,屬于中檔題.二、填空題

      13.下圖反應(yīng)的是“文學(xué)作品”、“散文”、“小說(shuō)”、“敘事散文”這四個(gè)文學(xué)概念的關(guān)系,請(qǐng)?jiān)谙旅娴目崭裆咸钊脒m當(dāng)?shù)膬?nèi)容:A為

      _______,B為_(kāi)______,C為_(kāi)_____,D為_(kāi)______.【答案】小說(shuō)

      文學(xué)作品

      敘事散文

      散文

      【解析】首先由圖可知、、、中的范圍最大,四種文學(xué)概念中文學(xué)作品是其余三個(gè)的統(tǒng)稱,據(jù)此可知的內(nèi)容;由于、之間存在關(guān)系包含,可知應(yīng)為“敘事散文”,“散文”;剩下為“小說(shuō)”.【詳解】

      由圖可得:的范圍最大,可知為“文學(xué)作品”,由、之間存在關(guān)系包含可知:為“敘事散文”,為“散文”;剩下為“小說(shuō)”.故答案為:

      (1).小說(shuō)

      (2).文學(xué)作品

      (3).敘事散文

      (4).散文

      【點(diǎn)睛】

      本題考查集合之間的包含關(guān)系,屬于基礎(chǔ)題.14.已知冪函數(shù)的圖象過(guò)點(diǎn),則的解析式為_(kāi)_______

      【答案】

      【解析】先設(shè)出冪函數(shù)的解析式,把點(diǎn)代入解析式即可.【詳解】

      設(shè)冪函數(shù),因?yàn)閮绾瘮?shù)的圖象過(guò)點(diǎn),解得..故答案為.【點(diǎn)睛】

      本題主要考查冪函數(shù)的解析式,熟練掌握冪函數(shù)的定義是解題的關(guān)鍵.15.已知的定義域?yàn)?,則函數(shù)的定義域?yàn)開(kāi)______.【答案】

      【解析】根據(jù)抽象函數(shù)的定義域的定義域?yàn)?,求得,即可得到函?shù)的定義域

      【詳解】

      因?yàn)楹瘮?shù)的定義域的定義域?yàn)?,?/p>

      所以,所以的定義域?yàn)?/p>

      .故答案為:

      【點(diǎn)睛】

      本題考查抽象函數(shù)的定義域,屬于基礎(chǔ)題.16.已知定義在上的奇函數(shù),當(dāng)時(shí),那么當(dāng)時(shí),的解析式為_(kāi)_______.【答案】

      【解析】設(shè),則,代入解析式得;再由定義在上的奇函數(shù),即可求得答案.【詳解】

      不妨設(shè),則,所以,又因?yàn)槎x在上的奇函數(shù),所以,所以,即.故答案為:

      【點(diǎn)睛】

      本題考查了利用函數(shù)的奇偶性求解析式,屬于基礎(chǔ)題.三、解答題

      17.化簡(jiǎn)與求值:

      (1);

      (2).

      【答案】(1);(2);

      【解析】(1)由對(duì)數(shù)的運(yùn)算性質(zhì)即可求解.(2)由指數(shù)、對(duì)數(shù)的運(yùn)算性質(zhì)即可求解.【詳解】

      (1)=3﹣23;

      (2)

      .【點(diǎn)睛】

      本題考查指數(shù)、對(duì)數(shù)的運(yùn)算性質(zhì),需熟記運(yùn)算法則,屬于基礎(chǔ)題.18.已知集合,.

      (1)分別求,;

      (2)已知集合,若,求實(shí)數(shù)a的取值集合.

      【答案】(1),(2)

      【解析】(1)根據(jù)題干解不等式得到,再由集合的交并補(bǔ)運(yùn)算得到結(jié)果;(2)由(1)知,若,分C為空集和非空兩種情況得到結(jié)果即可.【詳解】

      (1)因?yàn)?,即,所以,所以,因?yàn)?,即,所以,所以,所以.,所以?/p>

      (2)由(1)知,若,當(dāng)C為空集時(shí),.當(dāng)C為非空集合時(shí),可得.綜上所述.【點(diǎn)睛】

      這個(gè)題目考查了集合的交集以及補(bǔ)集運(yùn)算,涉及到指數(shù)不等式的運(yùn)算,也涉及已知兩個(gè)集合的包含關(guān)系,求參的問(wèn)題;其中已知兩個(gè)集合的包含關(guān)系求參問(wèn)題,首先要考慮其中一個(gè)集合為空集的情況.19.已知函數(shù).(1)用函數(shù)單調(diào)性的定義證明:在上是增函數(shù);

      (2)若在上的值域是,求的值.【答案】(1)證明見(jiàn)解析;(2).【解析】(1)根據(jù)單調(diào)性的定義,設(shè)x1,x2∈(0,+∞),且x1<x2,然后通過(guò)作差證明f(x1)<f(x2)即可;(2)由單調(diào)性列a的方程求解即可

      【詳解】

      (1)證明:任取,則,,即,在上是增函數(shù).(2)由(1)可知,在上為增函數(shù),且,解得

      .【點(diǎn)睛】

      考查單調(diào)增函數(shù)的定義,考查函數(shù)的值域,是基礎(chǔ)題.

      20.已知冪函數(shù)為偶函數(shù).

      (1)求的解析式;

      (2)若函數(shù)在區(qū)間(2,3)上為單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

      【答案】(1);(2)或.【解析】【詳解】

      (1)由為冪函數(shù)知,得或

      又因?yàn)楹瘮?shù)為偶函數(shù),所以函數(shù)不符合舍去

      當(dāng)時(shí),符合題意;

      .(2)由(1)得,即函數(shù)的對(duì)稱軸為,由題意知在(2,3)上為單調(diào)函數(shù),所以或,即或.21.已知

      (1)若在上恒成立,求的取值范圍;

      (2)求在區(qū)間上的最大值與最小值.【答案】(1);

      (2)當(dāng)時(shí),;

      當(dāng)時(shí),;

      當(dāng)時(shí),;

      當(dāng)時(shí),;

      【解析】(1)在上恒成立,只需解不等式即可.(2)首先求出二次函數(shù)的對(duì)稱軸,討論對(duì)稱軸所在的區(qū)間,根據(jù)開(kāi)口方向與距對(duì)稱軸的遠(yuǎn)近即可求出最值.【詳解】

      (1)由,若,即在上恒成立,所以,即,所以的取值范圍為

      (2)的對(duì)稱軸為,當(dāng)時(shí),即,在區(qū)間上的單調(diào)遞增,所以,;

      當(dāng),即,在區(qū)間上單調(diào)遞減,在上單調(diào)遞增,所以,;

      當(dāng),即,在區(qū)間上單調(diào)遞減,在上單調(diào)遞增,所以,;

      當(dāng),即,在區(qū)間上的單調(diào)遞減,所以,;

      【點(diǎn)睛】

      本題考查二次函數(shù)的性質(zhì),二次函數(shù)含有參數(shù)時(shí),需討論對(duì)稱軸所在的區(qū)間,屬于二次函數(shù)中的綜合題目.22.函數(shù)是定義在上的減函數(shù),且對(duì)任意的都有,且

      (1)求的值;

      (2)解不等式.

      【答案】(1)3;(2);

      【解析】(1)對(duì)任意的都有,且,令代入即可求解.(2)由,求出,再由得出,根據(jù)函數(shù)是定義在上的減函數(shù),得到即可求解.【詳解】

      (1)對(duì)任意的都有,∵,令,∴,∴,(2)由,可得,是定義在上的減函數(shù),,故不等式的解集為

      【點(diǎn)睛】

      本題考查了求抽象函數(shù)的函數(shù)值、根據(jù)單調(diào)性解不等式,屬于中檔題.

      下載2019-2020學(xué)年中學(xué)高一上學(xué)期期中數(shù)學(xué)試題(解析版)word格式文檔
      下載2019-2020學(xué)年中學(xué)高一上學(xué)期期中數(shù)學(xué)試題(解析版).doc
      將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦